
FUZZ-IEEE ’95. Copyright (C) 1995 by IEEE. PS generated on 94.12.6 at 11:27 AM

1

Fuzzy Constraint Satisfaction Using CCM
— A Local Information Based Computation Model

Yasusi Kanada
Tsukuba Research Center, Real World Computing Partnership

Takezono 1-6-1, Tsukuba, Ibaraki 305, Japan
E-mail: kanada@trc.rwcp.or.jp , WWW: http://www.rwcp.or.jp/people/yk/

Abstract
The present paper proposes a method of solving the

fuzzy constraint satisfaction problems defined by Ruttkay.
This method is based on CCM, which is a computational
model for emergent computation, or for locality-based
problem solving. CCM is a type of production system. It
works stochastically, or randomly, and works with evalua-
tion functions that are computed only with local informa-
tion. CCM has already been applied to constraint satisfac-
tion problems (CSPs). Binary-valued evaluation functions,
each of which indicates whether a constraint is satisfied,
are used. If the values of the evaluation functions are
extended to real values, fuzzy CSPs can be expressed in
CCM, and solved using a technique similar to GSAT or
annealing. We applied this method to a fuzzy graph color-
ing problem, and evaluated the performance. This method
can also be applied to open and dynamic fuzzy/non-fuzzy
CSPs, in which data and constraints are changing dynami-
cally or coming from or going to outside the system.

1. Introduction
Conventional constraint satisfaction problems and the
methods for solving them are “hard.” If there are even
only a few contradictory constraints, the problems becomes
unsolvable. However, constraints in the real world usually
contain contradictions. Some combinations of specific
values are more preferable than others, and constraints may
be added or removed dynamically while the problem is
being solved. Thus, methods for specifying and solving
“soft” constraint satisfaction problems are necessary.
Several types of soft constraint satisfaction were proposed
by Freuder and Wallace [Fre 92], Ruttkay [Rut 94]. These
and several other papers were summarized by Ruttkay.
Ruttkay gives several possible defini tions of fuzzy
constraint satisfaction problems (CSPs), and also offers a
method of solving fuzzy CSPs.

In Ruttkay’s definition, the degree of satisfaction of
each constraint, ci, satisfies 0 ≤ ci ≤ 1. If the constraint is
fully satisfied, then ci = 1, and if it is fully violated, then ci

= 0. The degree of joint satisfaction of constraints c1, c2,
…, cN is defined in one of the following three methods.

1. Conjunctive combination:

Cmin = min{ ci i = 1, …, N}

2. Productive combination: Cpro = (∏
i = 1

N
 ci)

1
N

3. Average combination: Cave =
1
N ∑

i = 1

N
 ci

The fuzzy CSPs are the problems of maximizing the
degrees of joint satisfaction shown above. The definition
of productive combination is slightly modified to achieve
normalization. Cave is the arithmetic mean of ci, and Cpro
is the geometric mean of c i. The harmonic mean version
of the combination may be added to the list.

Although fuzzy CSPs are types of constrained opti-
mization problems, their nature is different from typical
global optimization problems, where the evaluation func-
tions cannot be evaluated only using local information. In
fuzzy CSPs, the degree of satisfaction of each constraint is
evaluated locally or using only a small number of data.

Ruttkay’s algorithm is based on a branch-and-bound
method. Thus, it is suitable for finding the best solution,
i.e., the state in which the joint satisfaction takes its maxi-
mum value. However, if the problem is large, this algo-
rithm will take an excessive amount of time because the
time complexity of the branch-and-bound algorithm is
exponential in nature. The time complexity can probably
be reduced if the best solution is not required and appropri-
ate branch cuts are performed. However, other types of
methods, such as randomized methods, may perform better
in finding approximate solutions for fuzzy CSPs. In the
case of non-fuzzy CSPs, such non-backtracking methods
are successfully used in several applications [Mor 93,
Sel 92, Sel 93, Min 92].

A method of solving fuzzy CSPs, based on CCM (the
chemical casting model), which is a production-system-

FUZZ-IEEE ’95. Copyright (C) 1995 by IEEE. PS generated on 94.12.6 at 11:27 AM

2

12

0

2

1

5

8

12

0

2

1

5

8

Objects elations between objects
n atom
 molecule

ocal order degrees
 link

eactions

orking
emory eaction rules (Production rules)

Figure 1. The elements of CCM

based computational model for emergent computation
[For 91] or for locality-based problem solving, is shown in
the present paper. Local degrees of satisfaction are used as
evaluation functions, and partial summations of them are
stochastically optimized in this method. A computation
model called CCM is briefly explained in Section 2. The
CCM-based method of non-fuzzy constraint satisfaction,
proposed by Kanada [Kan 94a], is explained in Section 3.
The CCM-based method of fuzzy constraint satisfaction is
then explained in Section 4. This method is applied to a
fuzzy coloring problem. The result is shown in Section 5.
Finally, conclusions are given in Section 6.

2. Computational Model CCM
CCM (the chemical casting model) [Kan 92, Kan 94a] is
explained briefly in the present section.

Real-world problems are not necessarily expressed by
static constraints and evaluation functions. New informa-
tion may be found while solving problems, and preexisting
information may be dynamically changed by environmen-
tal change. The development of CCM aims at solving
problems by self-organizing or emergent computation
[For 91] in such situations. Complete information is not
usually available beforehand in such situations. Conven-
tional combinatorial problem solving methods that are
based on the assumption of complete information are weak
when the environment is continually changing. Thus,
CCM has been developed for computation based on local
and partial information. CCM is based on a production
system. Production systems are often used for developing
expert systems or modeling human brains. However, CCM
is different from conventional production systems. Firstly,
evaluation functions, which are evaluated using only local
information, are used. Secondly, stochastic control, or
randomized ordering of rule applications, is used.
Production rules are also applied only using local infor-
mation.

The system components in CCM are shown in
Figure 1 . The set of data to which the rules apply is called
the working memory. A unit of data in the working mem-
ory is called an atom . An atom has a type and an internal
state, and may be connected to other atoms by links . Links
are similar to chemical bondings, but the difference is that
links may have directions. Any discrete data structures
such as lists, trees, graphs or networks can be represented
using atoms and links.

The state of the working memory is changed locally by
reaction rules. “Locally” means that the number of atoms
referred by a reaction rule is small.1 The reaction rules are

1 Because (physical) distance is not a factor in CCM unlike
systems such as a chemical reaction system, “locally” does not
mean the distance is small.

written as forward-chaining production rules, such as rules
in expert systems. However, reaction rules are at a lower
level, or more primitive, than rules in expert systems. So,
the reaction rules are more similar to reaction formulae in
chemical reactions, and thus, this model is called the
chemical cast ing model. The syntax of reaction rules is as
follows:

LHS → RHS.

The left-hand side (LHS) and the right-hand side (RHS)
are sequences of patterns.

For example, the following reaction rule, which is a
rough sketch, simulates the generation of water from
oxygen and hydrogen:

H-H, O-? → H-O-H, ?

(This approximately means H2 +
1
2 O2 → H2O).

There are four patterns both in the LHS and RHS: two H’s,
an O, and “?” (an unknown atom). Each pattern matches
an atom of type oxygen or type hydrogen in the working
memory.

The reaction rule can be activated when there is a set of
atoms that matches the LHS patterns. If the reaction rule is
activated, the matched atoms vanish and new atoms that
match the RHS patterns are generated. A single reaction
rule is enough for solving a simpler optimization or
constraint satisfaction problem like the graph vertex color-
ing problem, which is described later, or the 0–1 integer
programming problem. Two or more reaction rules are
needed in more complex systems, in which there are two or
more ways of changing atoms.

Local order degrees (LODs) are a type of evaluation
functions. LODs express the degrees of local “organiza-
tion” or “order.” They are defined by the user to take a
larger value when the local state of the working memory is
better. An LOD may be regarded as a negated energy. For

FUZZ-IEEE ’95. Copyright (C) 1995 by IEEE. PS generated on 94.12.6 at 11:27 AM

3

example, it is analogous to bonding energy in chemical
reaction systems.

A reaction takes place when the following two condi-
tions are satisfied. First, there exists an atom that matches
each pattern in the LHS. Second, the sum of the LODs of
all the atoms concerned in the reaction, i.e., the atoms that
appear on either side of the reaction rule, does not decrease
as a result of the reaction. Reactions repeatedly occur
while the above two conditions are satisfied by a combina-
tion of any rule and atoms. The system stops when such a
combination is exhausted. However, reactions may occur
again if the working memory is modified because of
changes in the problem or the environment. Thus, open
and dynamic problems as mentioned beforehand can prob-
ably be handled properly using CCM.

Typically, there are two or more combinations that
satisfy the two conditions at once. There are two possible
causes that generates multiple combinations. One cause is
that there are two or more collections of atoms that satisfy
the LHS of a reaction rule. The other cause is that there
are two or more reaction rules containing atoms that match
the patterns in the LHS. In each case, the order of the reac-
tions, or the order of selection of such combinations, and
whether they occur in parallel or sequentially is determined
stochastically or randomly. Therefore, although the micro-
scopic behavior of CCM, i.e., a reaction, is deterministic,
the macroscopic behavior is nondeterministic or random.

3. CCM-based Non-Fuzzy Constraint
Satisfaction

An example of non-fuzzy CSP and a method of solving it
using CCM are demonstrated in the present section. This
example and the method will be extended to a fuzzy CSP
and a method of solving it in the next section.

CCM-based problem solving is a biased random walk
in the search space [Kan 94a]. Reaction rules are defined
as the methods of moving to the neighboring states in the
search space. In other words, reaction rules define the
neighbors of each state in the search space. LODs, which
are defined to indicate which are the locally better states,
bias the search. The mean value of the LODs is called the
mean order degree (MOD). Although CCM-based systems
do not compute MODs, they operate so as to increase
MODs or sums of LODs stochastically [Kan 94b]. MODs
can be defined on a small, medium or large scale. MODs
increase with every scale, if the LODs and rules are
defined properly.

Kanada [Kan 94a] describes a method of problem solv-
ing using CCM, and uses the N queens problem, which is a
CSP, for example. In this case, each constraint is
expressed as an LOD between two atoms. The value of an
LOD is higher when the constraint is satisfied, and it is

lower when the constraint is violated. In this way, the
global MOD, or the total of LODs, is optimized. That
means that all the constraints are satisfied by the system
operation. The same method can be applied to other CSPs.
A CCM-based system to solve a coloring problem is
shown below.

The problem is as follows. The graph vertex coloring
problem is a problem of how to color the vertices of a
graph using a specified number of colors, for example,
four. Each pair of neighboring vertices must be given
different colors. A map coloring problem can be converted
to a graph color ing problem, if areas of the map are
converted to vertices and the area borders are converted to
edges. Thus, the map coloring problem can be solved by
the same caster as the graph coloring one. For example,
the problem of coloring the graph with five vertices, shown
in Figure 2 , is equivalent to the problem of coloring the
map with five areas, which is also drawn in Figure 2. The
data structure used for solving the problem is as follows.
Vertices are represented by atoms. An atom of type vertex
has a color as its internal state. c1, c2, c3 and c4 are the
colors in Figure 2.

vertex

vertex

vertex

vertex

vertex

c1

c3

c2

c2

c4

Figure 2. An example of a graph coloring problem and
its representation

The reaction rule and LOD to solve the problem are
shown below. Firstly, the only reaction rule is shown in a
visual form in Figure 3 .1 This rule refers only to two
neighboring vertices and the edge between them, and it
changes the color of one of the vertices randomly. The
LHS of the rule contain two patterns. They match atoms of
type vertex. There is a link between the atoms, and this
link represents the edge between the vertices. Thus,
vertex1 and vertex2 can only match two vertices, which
have a link between them. When a reaction occurs, the
internal state of the atom that matched vertex1 , is rewrit -
ten. That is, the color, which was C1 before the reaction,
becomes C3 , which is generated randomly. C3 is selected
from predefined colors. Because no constraint between

1 Reaction rules must be coded by computation language SOOC-
94 (Self-Organization-Oriented Computing) to be executed.

FUZZ-IEEE ’95. Copyright (C) 1995 by IEEE. PS generated on 94.12.6 at 11:27 AM

4

C1 C2 C3 C2

randomize C3
vertex1 vertex2 vertex1 vertex2

Figure 3. The reaction rule for the graph coloring
system

C1 C2

randomize C2
vertex1 vertex1

(a) With no catalyst

C2

C1

C2

C4

C3 C3

randomize C4
vertex2

vertex1

vertex3 vertex2

vertex1

vertex3

(b) With two catalysts

……

C1 C3

randomize C3

vertex1

vertex

vertex1

vertex vertex vertex

(c) With a variable number of catalysts
Figure 4. The reaction rules with zero or two catalysts

C1 , C2 and C3 is given, these colors can be either the
same or different.1, 2

Secondly, the definition of LOD is shown below. The
LOD is defined between two vertices, v1 and v2 . Its value
is 1 when the constraint between v1 and v2 is satisfied, and
it is 0 otherwise.

O(v1, v2) =
1 if not connected(v1, v2) or v1.color ≠ v2.color
0 otherwise

This definition means that the value of the LOD is 1
(higher) if the vertices are not connected or have different
colors, and that it is equal to 0 (lower) otherwise. The
value of LOD is 1 when the vertices are not connected
(because there is no constraint, no constraint is violated), in
this case. The value is 1 when the vertices are connected
and have different colors, because the constraint between
the vertices is satisfied. The value is 0 when the vertices
are connected and have the same color, because the
constraint is violated. Thus, O (v1, v2) can be regarded as
the membership function of the crisp set of pairs of vertices
that satisfy the constraints.

In general, a problem to be solved can be expressed in
CCM, if a method of walking in the search space can be
expressed as a reaction rule, and the problem consists of
local constraints, which can be expressed by binary LODs.

Reactions occur successively so that the values of
MODs increase stochastically when the rule shown above
is used. If the system reaches a solution state, the system
stops, because no reaction can occur in this state.
However, a reaction may decrease the LODs of the neigh-
boring edges. So the MOD does not linearly increase, and
the system does not necessarily find a solution in finite
time. However, experiments show that the execution time
is always finite in practice.

A pattern of atoms, whose value is not changed by the
rule, is called a catalyst [Kan 94a]. In the rule in Figure 3,
vertex2 is a catalyst. A rule with no catalyst, as illustrated
in Figure 4 (a), can be given. A rule with two or more

1 Because C3 is generated randomly, the same color may be
selected for C3 as for C1 or C2. However, the IOD does not
increase in the case of such a reaction, so the reaction does not
occur (See the definition of LOD given later).
2 The rule is almost symmetrical and reversible, but the random-
ize statement in the RHS breaks the symmetry of the rule.

catalysts can also be given. A rule with two catalysts is
shown in Figure 4 (b). Addition or removal of catalysts
changes the locality of the computation, and changes the
performance. In the coloring problem, a system with only
the no-catalyst rule performs a complete random walk in
the search space. The performance is out of the question
because this system does not stop even if a solution is
found. If more catalysts are added, the number of reactions
decreases, and the performance improves under certain
conditions. The rules in Figures 4 (a) and (b) have a fixed
number of catalysts. However, the number of catalysts can
vary dynamically. In Figure 4 (c), all the neighbors of
vertex1 are the catalysts, and the number of catalysts
depends on the vertex matched to vertex1.

A slightly modified version of the rule and LOD has
been coded in SOOC-94, which is a computation language
or a general problem solver for CCM-based computation,
and then executed. It has been applied to the map of the
mainland of the USA, consisting of 48 states [Tak 92],
shown in Figure 5 . All the states are in the same color in
the initial state. The result of performance measurement of
this system using a SOOC-94 compiler and interpreter on
top of Common Lisp on a Macintosh Quadra 840 AV is
shown below. A correct solution was found in every run.
The number of reactions, the number of LHS matches
(including failed cases), and the execution time are mea-
sured. The relation between the number of catalysts and
the average performance is shown in Figure 6. The num-

FUZZ-IEEE ’95. Copyright (C) 1995 by IEEE. PS generated on 94.12.6 at 11:27 AM

5

Figure 5. The USA mainland map

1 2 3 Variable

Number of catalysts (Nc)

1E+01

1E+02

1E+03

1E+04

1E+05

Number of reactions
Number of matchings
1000 * CPU time (sec)

Figure 6. The number of catalysts and the average
performance

ber of reactions decreases, but the execution time and the
number of LHS matches does not necessarily decrease,
when the number of catalysts increases. The average num-
ber of catalysts in the variable case is equal to the average
number of neighbors, i.e., 4.42, in the USA mainland map.

A particular method for escaping the local maxima of
MOD is applied in the variable-catalyst case. This method
is called the frustration accumulation method (FAM)
[Kan 94b]. It is similar to a technique used in GSAT
[Sel 93]. The variable-catalyst rule sometimes fails to find
a solution if this method is not used, but it can almost
always find a solution when using this method without
significant overhead. The effects of adding or removing
catalysts have been analyzed in detail by Kanada
[Kan 94b].

4. CCM-based Fuzzy Constraint Satisfaction
The fuzzy graph vertex coloring problem is defined and
CCM-based system to solve this problem is shown in the
present section.

Ruttkay [Rut 94] describes the fuzzy robot-dressing
problem as an example of fuzzy CSP. This problem is
very small. Thus, it is suitable for tracking methods of
solving fuzzy CSP. However, it is not suitable for evaluat-
ing the performance of such methods.

The fuzzy graph vertex coloring problem is the problem
of coloring the vertices of a graph using a specified number
of colors. A pair of neighboring vertices must be given
different colors, and some pairs are preferable to others.
The preference is given as a fuzzy constraint between
colors. Thus, each degree of preference between colors c1
and c2 , c(c1 , c2), is expressed as a real number between 0
and 1. An example of this fuzzy constraint is shown in
Table 1 as a matrix. The degree of preference between the
same color is 0, and that between different colors is greater
than 0. The preference is symmetric. This means that the
preference between colors x and y is the same as that
between colors y and x. A fuzzy graph vertex coloring
problem can be converted to a fuzzy map coloring problem
in the same as in the non-fuzzy coloring problem.

Table 1. An example of a fuzzy color constraint: c

Color Yellow Blue Red Green

Yellow 0 0.8 0.5 0.6

Blue 0.8 0 0.8 0.7

Red 0.5 0.8 0 0.9

Green 0.6 0.7 0.9 0

The same reaction rule as for the non-fuzzy problem
can be used for solving the fuzzy coloring problem. If the
degree of joint satisfaction is defined as the average
combination, Cave, the LOD can be modified as follows.

O(v1, v2) =
1 if not connected(v1, v2)
c(v1.color, v2.color) otherwise

In this case, the mean value of all the LODs is equal to
Cave. Thus, it is maximized. O(v1, v2) can be regarded as
the membership function of the fuzzy set of pairs of
vertices which satisfy the constraints.

If the degree of joint satisfaction is defined as the
productive combination, Cpro , the LOD can be modified as
follows.

O(v1, v2) =
0 if not connected(v1, v2)
log c(v1.color, v2.color) otherwise

FUZZ-IEEE ’95. Copyright (C) 1995 by IEEE. PS generated on 94.12.6 at 11:27 AM

6

0.65 0.7 0.75 0.8

Cave

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y
co

un
t

Random(non-fuzzy)
Biased (fuzzy)

Figure 7. The histogram of Cave in 200 runs

If c(v1, v2) = 0, then log c(v1, v2) = – ∞, so a small enough
number, e.g., 10–99 , must be used for the value of c(v1, v2),
instead of 0. In this case, the mean value of all the LODs
is approximately equal to log Cpro . Thus, Cpro is maxi-
mized.

However, if the degree of joint satisfaction is defined as
the conjunctive combination, this method cannot be
applied because Cmin cannot be expressed by LODs.

If the variable-catalyst rule shown in Figure 4 (c) is
used, a technique for escaping from local maxima of
MODs is necessary. A modified version of the frustration
accumulation method (FAM), which is called the fuzzy
FAM , is used here. The fuzzy FAM is explained below.
Each atom, or vertex, has a type of energy called frustra-
tion . If a vertex has positive frustration, reactions occur
more easily. Each vertex initially has a certain level of
frustration, e.g., 0.1. The frustration is increased when the
LHS of the reaction rule is tested but there are constraints,
concerning to the vertex, which are not or will not be fully
satisfied.

More specifically, if the rule and a set of atoms are
tested, the reaction does not occur, and the degree of satis-
faction of the constraints, c (0 ≤ c ≤ 1) is less than 1, the
frustration of the atom to be modified by the rule, f , is
replaced by (1 + (1 – c) k) f,1 where k is a constant around
0.005. If the rule and a set of atoms are tested and the reac-
tion occurs but the constraints are not fully satisfied, the
frustration is also replaced by (1 + (1 – c) k) f. However, if
the reaction occurs and the constraints are fully satisfied,
the frustration is reset to its initial value. The reaction
occurs when ob – f ≤ oa , where ob is the sum of the LODs
of the vertices matched to vertex1 and other patterns in the
rule before the reaction, and oa is that after the reaction.
Thus, the reaction occurs more easily when the value of f is
larger.

5. Experiments in Fuzzy Constraint
Satisfaction

The performance of the fuzzy version of the system
described in the previous section was measured using the
USA mainland map. The fuzzy constraint shown in
Table 1 was used. All the states were in the same color in
the initial state. The system did not stop in reasonable time
when rules with a fixed number of catalysts, i.e. 1 to 3,
were used. Thus, we can probably conclude that the fuzzy
coloring problem is significantly more difficult to solve
than the corresponding non-fuzzy problem. When the

1 (1 + k) f is used instead, in the original (non-fuzzy) FAM. If (1
+ k) f is used in the fuzzy FAM, experiments show that the
performance is worse. This probably means that the frustration
must increase monotonically when the degree of constraint satis-
faction decreases. However, whether the expression (1 + (1 –
 c) k) f is the best is not known.

variable-catalyst rule with the fuzzy FAM is used, fairly
good solutions can be found.

The system with an average combination was tested 200
times with k = 0.005. The average, maximum and mini-
mum values of Cave are 0.763, 0.783 and 0.721. The dis-
tribution of C ave when the fuzzy version of the system
stopped is shown by the continuous line in Figure 7 . Each
class width of C ave is 0.005. All the strong constraints
were satisfied in 20 runs, but they were not satisfied in
other 180 runs because violation of a strong constraint is
not inhibited in the case of an average combination. The
broken line is the distribution of Cave when the non-fuzzy
version of the system (with k = 0.4), described in Section 3,
was executed and stopped. This distribution is very sharp
and far from normal distributions. There is almost no
intersection between these two distributions. This means
that the system in the previous section finds much better
solutions than the non-fuzzy system that randomly selects a
state among the states that satisfy all the strong constraints.

The system with the productive combination was also
tested 200 times with k = 0.005. The average, maximum
and minimum values of C pro are 0.724, 0.764 and 0.669.
When the value of c (v1 , v2) is 0, it is replaced by 0.03 in
this experiment, because if a too small number such as
10–99 is used, even the strong constraints cannot be satis-
fied in most runs.2 The distribution of Cpro when the
fuzzy version of the system stopped is shown by the
continuous line in Figure 8 . All the strong constraints
were satisfied in 123 runs. They are satisfied in more than
half the runs because the penalty for violating a strong
constraint is still very high. The (real) values of Cpro in
the other 67 runs as 0, and these runs are ignored in this

2 The value for inhibitory color assighnment, 0.03, is near the
optimal in our experiments.

FUZZ-IEEE ’95. Copyright (C) 1995 by IEEE. PS generated on 94.12.6 at 11:27 AM

7

0.65 0.7 0.75 0.8

Cpro

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y
co

un
t

Random (non-fuzzy)
Biased (fuzzy)

Figure 8. The histogram of Cpro in 200 runs

0.01 0.1 1 10 100 1000

Total execution time (sec)

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

C
av

e
an

d
C

pr
o

Average - trials 1
Average - trials 2
Productive - trials 1
Productive - trials 2

Figure 9. The performance of fuzzy USA map
coloring using CCM

figure. The broken line is the distribution of C pro when
the non-fuzzy version of the system (with k = 0.4) was
executed and stopped. The performance is similar to that
achieved using the average combination.

The execution statistics are compared in Table 2 with
the non-fuzzy CSP using the variable-catalyst rule of
Section 3. The average execution time of the fuzzy color-
ing is much longer than the non-fuzzy coloring. This fact
also demonstrates that the fuzzy coloring is much more
difficult.

Table 2. The statistics of fuzzy / non-fuzzy USA map
coloring using the variable-catalyst rule

Average
number
of reac-

tions

Average
number

of
matching

Average
exec.
time
(sec)

Min
exec.
time
(sec)

Max
exec.
time
(sec)

Non-fuzzy
coloring 112 4406 0.5 0.3 1.3

Fuzzy
coloring
(average)

1348 54071 31.4 0.4 272.3

Fuzzy
coloring

(productive)

659 44630 25.2 1.1 145.7

The above results can be viewed in a different way in
Figure 9 . The system is run repeatedly and the total
execution time is measured (using the same data as
Figures 7 and 8). The relation between the total execution
time and Cave or Cpro are plotted in this figure. Two
sequences of trials using average combinations are plotted
by I and E, and two sequences using productive combina -
tions are plotted by C and G. For example, in the average
combination case, the first trial took 31.4 seconds, and the
resulting Cave was 0.763. When 108.8 seconds were spent

in total (in the fourth trial), a better solution, Cave = 0.774,
was found, and so on.

Randomly generated constraints are also tested. In
these cases, the averages of Cave and Cpro are dis tributed
between 0.3 and 0.9, but no other significant difference
from the case with the constraints in Table 1 was found.

The CCM-based method is also compared with a back-
track search. All the states are not colored in the initial
state in this algorithm. The color that maximizes the sum
of the degree of satisfaction of already colored vertices is
selected first when coloring a vertex. This algorithm is
similar to a best-first search, but it is a tree-based depth-
first search. Thus, it is different from A* search [Har 68],
which is a queue-based best-first search.1 The order of
vertices to be colored is fixed. The vertices are sorted
before coloring so that more constrained vertices are
colored in earlier steps. No dynamic information is used to
decide the order of coloring. Thus, the algorithm proposed
by Ruttkay, which uses dynamic information, may perform
better. Two versions of this algorithm, which use slightly
different methods of sorting vertices, were tested. The
performance was measured only once for each parameter
because these algorithms are deterministic.

The results are shown in Figure 10 . The result of the
first version of the algorithm using the average combina-
tion is shown by I. This algorithm found a solution, in
which Cave = 0.765, in 0.02 second, and found a better
solution in 0.3 second, and so on. The result of the second
version using average combination is shown by E. The

1 A* search has also been tested for solving the fuzzy coloring
problem. However, no good evaluation function has been found,
and the performance is worse than the tree-based algorithm.

FUZZ-IEEE ’95. Copyright (C) 1995 by IEEE. PS generated on 94.12.6 at 11:27 AM

8

0.01 0.1 1 10 100 1000

Execution time (sec)

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

C
av

e
an

d
C

pr
o

Average - ver.1
Average - ver.2
Productive - ver.1
Productive - ver.2

Figure 10. The performance of fuzzy USA map
coloring using backtrack search

results of the two versions of the algorithm using produc-
tive combination are also shown in Figure 10. Not every
run terminated within 1000 seconds.

Figures 9 and 10 can be compared. In the average
combination case, the quality of the solutions found using
CCM is comparable to that shown in this figure, although
it takes more time to get the first solution. However, in the
productive combination case, the quality of the solutions
found using CCM is worse. This is probably because
branch cuts work well in the backtrack search. However, if
strong constraints are handled better, CCM-based search
may perform better.

6. Conclusion
A method of solving fuzzy constraint satisfaction problems
is outlined in the present paper. This method is applied to
a fuzzy coloring problem for graphs or maps, and reason-
ably good solutions can be found in reasonable time, e.g.,
20 seconds, in the case of the fuzzy USA map. Although
the average execution time of this method is longer than
for a backtrack search, it may be improved by paralleliza-
tion. Our method is much more suitable for parallelization
than backtrack algorithms.

This method can also be applied to open and dynamical
fuzzy/non-fuzzy CSPs, in which data and constraints are
changing dynamically or coming from or going to outside
the system.

The main focuses of future work are as follows. Firstly,
this method should be applied to larger-scale fuzzy CSPs
and real-world CSPs. In real-world CSPs such as timetable
planning, there are many mutually contradicting
constraints. Some constraints or combinations of specific

values are more important and others are less important.
This method can probably be applied to such types of
problems, because the constraints can probably be regarded
as fuzzy constraints. Secondly, there are many parts or
parameters of this method which can be improved. For
example, parameters such as k and the initial value of the
frustrations could be revised.

Acknowledgment
The author thanks Yuzuru Sato from the University of
Tokyo for developing the rule shown in Figure 3 and the
graphics data and routines for the USA map coloring
(Figure 5).

References
[Fre 92] Freuder, E. C., and Wallace, R. J.: Partial

Constraint Satisfaction, Artificial Intelligence , 58, 21–
70, 1992; also: IJCAI ’89, 278–283, 1989.

[Har 68] Hart, P. E., Nilsson, N. J., and Raphael, B.: A
Formal Basis for the Heuristic Determination of
Minimum Cost Paths, IEEE Trans. SSC , SSC-4, 100–
107, 1968.

[Kan 92] Kanada, Y.: Toward a Model of Computer-
based Self-organizing Systems, Proc. 33rd Program-
ming Symposium, 1992 (in Japanese).

[Kan 94a] Kanada, Y., and Hirokawa, M.: Stochastic
Problem Solving by Local Computation based on Self-
organization Paradigm, 27th Hawaii International Con-
ference on System Sciences, 82–91, 1994.

[Kan 94b] Kanada, Y.: Methods of Controlling Locality
in Problem Solving Using CCM: A Model for
Emergent Computation, SWoPP ’94 , 29–38, Informa-
tion Processing Society of Japan, 1994 (in Japanese).

[Min 92] Minton, S., Johnston, M. D., Philips, A. B., and
Laird, P.: Minimizing Conflicts: A Heuristic Repair
Method for Constraint Satisfaction and Scheduling
Problems, Artificial Intelligence , 58, 1–3, 1992.

[Mor 93] Morris, P.: The Breakout Method For Escaping
From Local Minima, 11th National Conference on
Artificial Intelligence (AAAI ’93), 40–45, 1993.

[Rut 94] Ruttkay, Z.: Fuzzy Constraint Satisfaction, 3rd
IEEE Int. Conf. on Fuzzy Systems , 1263–1268, 1994.

[Sel 92] Selman, B., Levesque, H., and Mitchell, D.: A
New Method for Solving Hard Satisfiability Problems,
10th National Conference on Artificial Intelligence
(AAAI ’92), 440–446, 1993.

[Sel 93] Selman, B., and Kautz, H.: Domain-
Independent Extensions to GSAT: Solving Large
Structured Satisfiability Problems, 13th Int. Joint Conf.
on Artificial Intelligence (IJCAI ’93), 290–295, 1993.

[Tak 92] Takefuji, Y.: Neural Network Parallel Pro-
cessing, Kluwer Academic Publishers, 1992.

