

Stochastic Problem Solving by Local Computation based on Self-organization Paradigm

Yasusi Kanada

Tsukuba Research Center Real World Computing Partnership

Masao Hirokawa

Advanced Research Laboratory

Hitachi, Ltd.

1

Problems of real-world computational systems

Introduction

Future real-world computational systems are

Complex

(such as secretary robot brains)

- "Non-linear," or
 Undecomposable into "independent" modules
 (because of strong interaction between modules)
- Open and adaptive to real world (i.e., to humans and/or natural systems)
 - Adaptive to unexpected inputs (in a short period of time)

 humans and natural systems are unpredictable because autonomous and nondeterministic.
 - Adaptive to environmental change (in a long period of time)

In development of real-world computational systems

- No global and complete specifications can be written, because open to real world
- Top-down design or divide-and-concur method do not work well, because of no complete specification, and complexity.

What is the self-organization paradigm?

What is self-organization?

- ◆ An emergent behavior toward "global order" from local motion
- We should learn from nature.
 - Natural sytems are self-organizing systems.
 - Natural sciences on self-organizing systems: *Dissipative structure theory* by Prigogine, *Synergetics* by Haken, *Molecular evolution theory* by Eigen, *Autopoiesis theory* by Matrana and Varela, *Bio-holonics* by Shimizu, Natural and artificial *neural networks*,

"Global order" from computation with local information

- Computation only with local and partial knowledge no algorithms.
- Computation only with partial specification! (or no specification?)

The knowledge shortage must be covered by

- Nondeterminism (trial and error, or random selections) in short range.
- Self-organization in long range. (Nondeterminism is important for self-organization.)

Research goals

Long-term research goals

- To develop a new problem-solving methodology based on a self-organization paradigm.
- To develop adaptive and open computational systems.

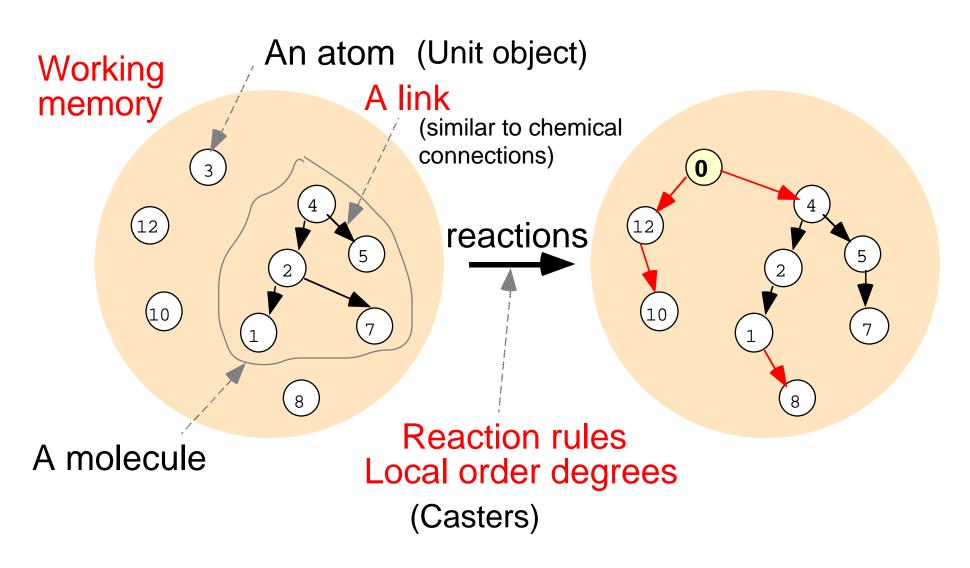
We are only at the beginning of research toward these goals.

Short-term research objective

- To establish a computation mechanism and methodology, which are
 - Emergent and nondeterministic
 - Based on local and partial information.

Computation model CCM

A microscopic model of computation


We develop a computation model called CCM for self-organizing computation.

- CCM is an abbreviation of "Chemical Casting Model."
- "Chemical" means CCM has an analogy to chemical systems.
- "Casting" means programming or computation.
 - I do not use "program" because it means a whole and complete plan.

5

Components of CCM — 1

Components of CCM — 2

Casters (Programs) of CCM

A caster consists of

- Local order degrees (LODs)
- Reaction rules

LODs

- Are local evaluation functions (or negative energy).
 - "Local" means "defined on a small number of data."
- Are defined for an atom or between two or more atoms.

Reaction rules

- Change partial (local) state of the working memory.
- Are written as forward-chaining production rules, such as
 - Chemical reaction formulae.
 - Rules in production systems, used for building expert systems.

Computation process in CCM

A reaction

- An application of a reaction rule is called a reaction.
- A reaction takes place when
 - There are a rule and a set of data that match the LHS of the rule, and
 - The sum of LODs of the data, concerning the reaction, does not decrease by the reaction.

Succession and termination of reactions

- Reactions occur successively when possible.
 - Their order is nondeterministic (or random) No limit cycles occur!
- If no reaction can occur, then the system (temporarily) terminates.
- The system may begin to work again, when data are modified, removed or added externally.

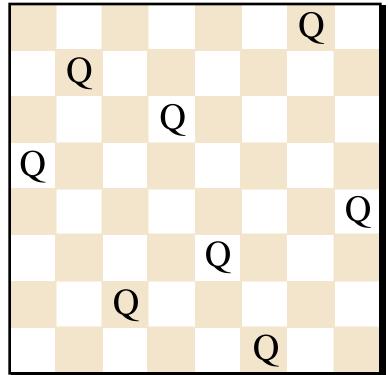
8

The N queens problem

Example: the *N* queens system — 1

The N queens problem

- An extension of the eight queens problem.
- A problem of finding a layout of N queens on N x N "chess board," where a queen does not take each other.


The N queens system

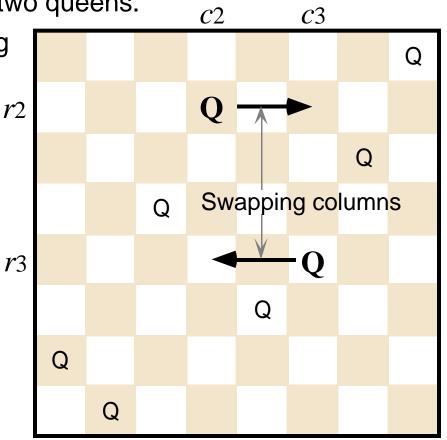
 A computational system to solve the N queens problem in CCM.

The reasons that we use the *N* queens problem

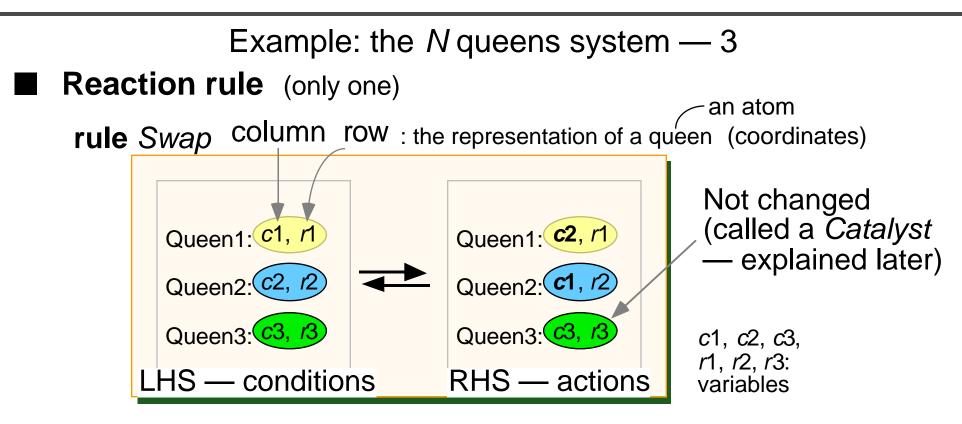
- We have to start with a simpler system.
- This system has several characteristics that will probably lead us to a better understanding of complex systems.

A solution of the eight queens problem

How to solve the *N* queens problem?


Example: the *N* queens system — 2

Using swap operations


- A reaction swaps the columns of two queens.
- To solve the problem by repeating the swaps of different queens.

The initial conditions

- All the queens are put on the board from the beginning.
- There is only one queen in each row and each column.
 - Example: all the queens can be put on a diagonal line.
 - This condition holds at any time because the reaction preserves it.

The caster for the N queens system

Local order degree (Mutual order degree)

1

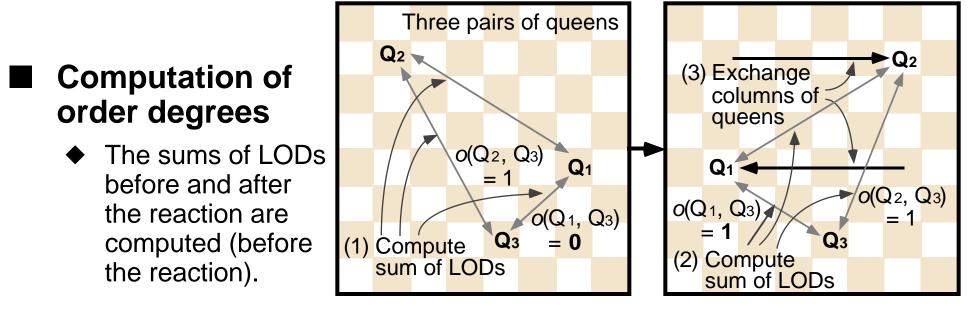

Definition: o(x, y) = 0 if x.column - y.column = x.row - y.row or x.column - y.column = y.row - x.row,

otherwise.

More ordered If queens x and y are diagonally oriented, then 0. Otherwise, 1.

Less ordered

Content of working memory for the eight queens


Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japan 94.1.5 V1.3

A more detailed semantics of reactions

Example: the *N* queens system — 4

Selections of a rule and objects

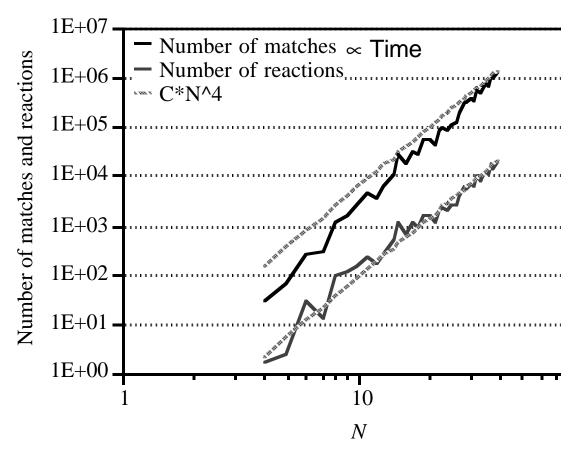
- No need to select a rule because there is only one rule.
- Three queens are nondeterministically (randomly) selected and reacted.

The reason that the catalyst (Q₃) is necessary

- The sum of LODs is not changed if the rule contains only Q₁ and Q₂, because the LOD between Q₁ and Q₂ is not changed.
 - So the system does not stop when a solution is found.

Performance evaluation — 0*

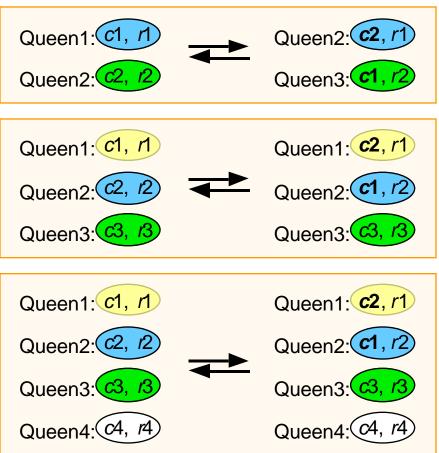
Several conditions of the measurement


The performance of the *N* queens system is measured using SOOC.

- SOOC (Self-Organization-Oriented Computing) is a computation language based on CCM.
- The initial layouts of queens are random.
- All values are averages of ten executions.

Results of the N queens

The problems never fail to be solved in our experiments,

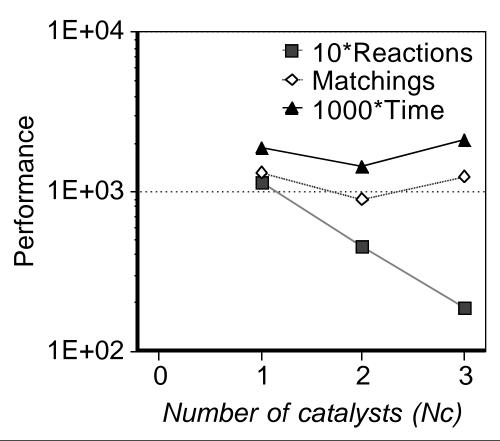

- In spite of the stochastic and non-exhaustive search method.
- The execution time is in polynomial order (O(*N*^{4.6})).*
 - Much faster than blind backtrack search (O(e^N)).
 - It is slower than more intelligent methods (Yagrom's method — O(N)).

Locality control by catalysts — 1

Variability of locality

- The locality of data reference can be controlled by adding/removing catalysts to rules.
 - Versions of the *N* queens rule
 - A rule with no catalyst (Nc = 0):
 - Most local (minimum data reference)
 - A rule with one catalyst (Nc = 1):
 - A rule with two catalysts (Nc = 2):
 Less local
 - A rule with N 2 catalysts (Nc = N - 2)
 - Global all the queens are referred.

Locality control by catalysts - 2


Performance comparisons when changing Nc

No catalyst

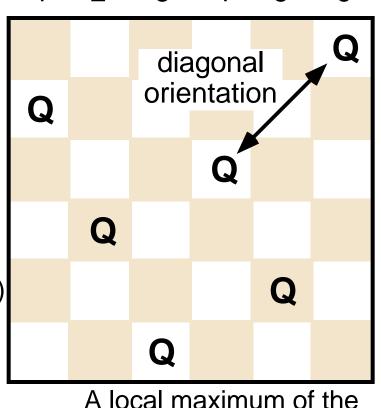
- The system does not stop even when a solution is found
 - because there is no bias toward solutions.
 - The execution time is infinite.

One catalyst or more The number of reactions

- decreases when *Nc* increases.
- The execution time is optimum when Nc = 2.

Locality control by catalysts — 3

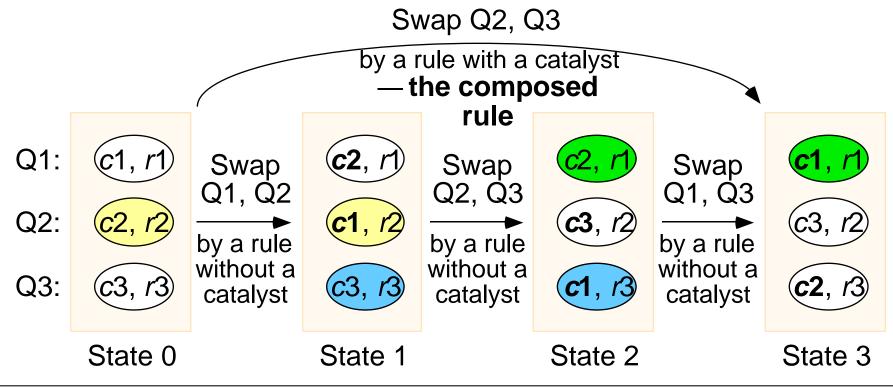
Escaping from "local maxima"


No catalyst

No bias (complete random walk)

 no local maxima (of global order degree — the total of LODs (negative total energy)).
 1
 2
 3
 4
 5

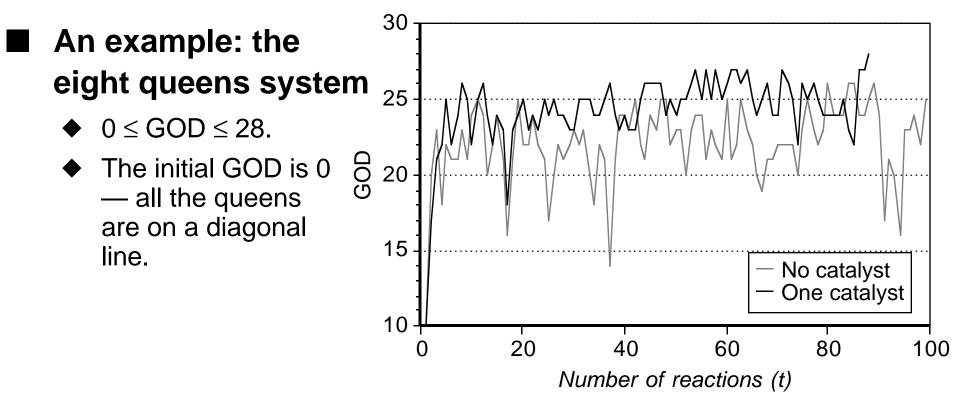
One catalyst or more


- There may be local maxima — invalid termination.
- If less catalysts less chances to fall into a local maximum.
 - Simulated-annealing-like effect.
- Example: the six queens system
 - No local maxima (are proved to be) exist when Nc = 1.
 - Local maxima exist when *Nc* = 4 (global rule).

6

Locality control by rule composition*

- I The locality can also be controlled by composing rules.
- A rule with two or more catalysts may be composed using rules with one catalyst.
 - Example: the N queens rule with two catalysts can be composed using the rule with one catalyst twice.



Global order degree and its time sequence*

A macroscopic model of computation

Global order degree (GOD)

- GOD is the sum of the LODs of all the atoms (or all pairs of atoms).
- The GOD is at a maximum at the solutions.

Other applications*

Current applications of CCM — still far from real world

			Rules and LODs		Performance	
Classification		Problem	Number of rules *	Number of LODs	Time	Solution quality
	Optimization	TSP	1	1	O(N)	97 times optimum out of 100 trials $(N = 10)$
NP - hard		0–1 Knapsack	1 (or 2)	1	O(N)	45 times optimum out of 100 trials ($N = 20$)
		<i>N</i> Queens	1	1	O(N)	_
	Constraint satisfaction	Graph (or map) coloring	1	1	- 2	
P-hard		Sorting	1	1	<i>O</i> (<i>N</i> ²)	_

* Rules for working memory initialization are not counted.

The above problems are solved using very simple casters.

I explained the self-oreganization paradigm.

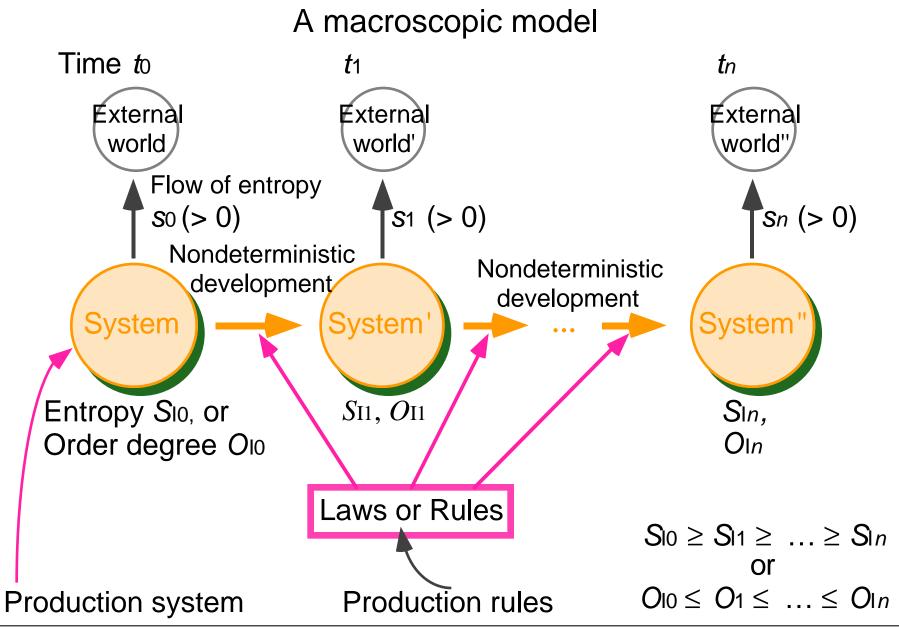
Self-organization — "global order" from computation with local information

We proposed a computation model CCM for self-organizing computation.

- Problems can be solved using one or a few simple production rules and evaluation functions.
- Both production rules and evaluation functions works locally — i.e., on a small number of objects.
- Locality of data reference can be controlled
 - By adding/removing catalysts and composing rules.
 - Local maxima can be avoided by changing locality.
 - Efficiency of searches can be controlled by changing locality.

Future work

Toward open systems


- To develop CCM-based open systems
 - Constraint satisfaction or optimization problems are basically closed.
- To observe and to analyze more complex emergent properties in those systems.

Self-referencial systems: a type of self-organizing systems

- To study self-modifying rules and LODs.
- To study self-modifying targets of computation.
- CCM must be enhanced to express self-references.

- Introduction the self-organization paradigm
- Computation model CCM (Chemical Casting Model)
- Example: the N queens system
- Locality control of data references
- Other examples
- Summary and future work

A model of self-organizing systems — 1*

I This model can be applied to a wide range of self-organizing systems, such as

- Our target self-organizing computational system.
- A thermodynamic system that generates a dissipative structure.

The growth of a self-organizing system is autonomous, and, thus, its behavior is unpredictable, or it is observed as nondeterministic or driven by noise that comes from the outside of the system.

Data in CCM*

Components of CCM — 3

Working memory

• The set of objects to which the rules apply.

Atoms

- Atoms are unit objects.
- Atoms have internal state.

Links

- Links are connectors of atoms.
- Links may have directions.
- Links may have labels (names).

Order of reactions is nondeterministic.

Random, or independent of the problem logic.

Different reaction orders may cause different results.

- ♦ All possible results will be as expected
 - because induced by the LODs.

Scheduling strategies

- Are specified by the user, or determined by the system.
- Control the selections macroscopically.
- Are similar to conflict resolution strategies in conventional production systems.

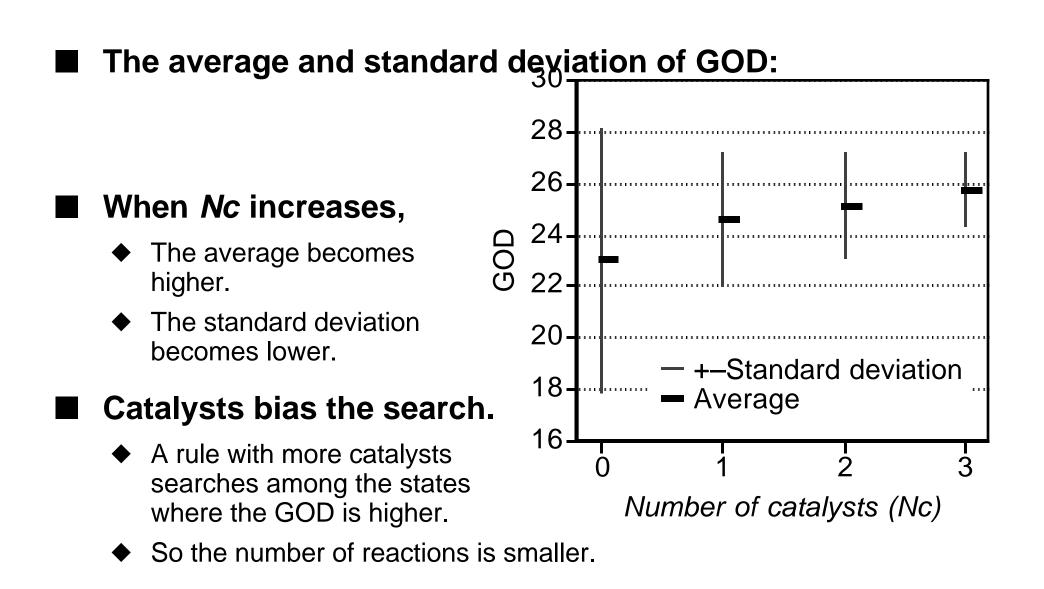
Mathematical random strategies (MRS)

- Use pseudo-random numbers.
- Do not cause limit cycles, even if the user pays no attention.
- Are the standard strategies.

Systematic strategies (SS)

- Use systematic methods independent of the problem logic.
- May cause limit cycles (infinite loops).

I Parallel strategies


Computation as Markov process*

Computation can be regarded as a stochastic process in CCM even when an S strategy is used.

Three states during the computation of CCM.

- Strongly non-stationary state
 - The state in which the probability distribution rapidly changes when a reaction occurs.
- Quasi-stationary state
 - The state that the probability of the solution state, $p(g_{max})$, increases when a reaction occurs, where gmax is the maximum value of the GOD (= NC2), but that the ratio of other states, $p(g)/(1 p(g_{max}))$ (g = g_{min} , ..., g_{max} -1), are almost constant when a reaction occurs, where g_{min} is the minimum value of the GOD (= 0).
- Termination state (Stationary state)
 - The state that $p(g_{max})$ is 1. This is the limit state when $t \to \infty$.

The above states can be modeled by a Markov chain.

Conflict and Cooperation in CCM*

Categories of CCM-based systems

Cooperative systems

- No reaction will decrease the GOD in cooperative systems.
- Cooperative systems are called such because reactions cooperate toward the local or global maximum of the GOD.
- Examples: TSP system, the 0–1 Knapsack system and the sorting systems.

Conflicting systems

- ♦ A reaction may decrease the GOD in conflicting systems.
- Conflicting systems are called such because reactions does not cooperate toward that.
- Some systems have little conflict while others have considerably more.
- Examples: the *N* queens system and the graph coloring system.