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Abstract
We are developing a new problem-solving methodology

based on a self-organization paradigm.  To realize our
future goal of self-organizing computational systems, we
have to study computation based on local information and
its emergent behavior, which are considered essential in
self-organizing systems.  This paper presents a stochastic
(or nondeterministic) problem solving method using local
operations and local evaluation functions.  Several con-
straint sat isfaction problems are solved and approximate
solutions of several optimization problem are found by this
method in polynomial order time in average.

Major features of this method are as follows.  Problems
can be solved using one or a few simple production rules
and evaluation functions, both of which work locally, i.e.,
on a small number of objects.  Local maxima of the sum of
evaluation function values can sometimes be avoided.
Limit cycles of execution can also be avoided.  There are
two methods for changing the locality of rules.  The effi -
ciency of searches and the possibility of falling into local
maxima can be controlled by changing the locality.

1. Introduction
We are developing a new problem-solving methodology
based on a self-organization paradigm  [Kan 92a,
Kan 92b].  The long-term target of this methodology is to
develop adaptive real-world  or open computational sys-
tems that communicate with human beings, human-devel-
oped systems, and natural systems.  Real-world systems,
such as on-line banking systems, should be ready to pro-
cess unexpected situations because human beings or natu-
ral systems are autonomous and nondeterministic and thus
their behavior is often unpredictable.  Complete specifica-
tions of these computational systems cannot be written
because of such unpredictability.

Current software development methods are mostly top-

* Part of this research was done at Central Research Laboratory,
Hitachi Ltd.

down and are based on a type of divide-and-concur
method.  Expert systems are developed in a more flexible
way, but are essentially the same.  They depend on the illu-
sion that the system is reductionis tic  and can be divided
into “independent” functional modules.  Current methods
assert that the complete specification can be described.
However, it is impossible to describe when the systems
include or are interfaced to autonomous and nondeterminis-
tic systems.  The reductionistic programming paradigm has
failed to develop real-world systems.

Thus, we must find another paradigm.  A most promis-
ing solution is the self-organization paradigm .  The self-
organization paradigm holds that computational systems
are constructed without a whole and complete plan of
computation and that they work basically in a bottom-up
manner using local information only but generating global
results via emergent behavior [For 91].  Thus, they work
autonomously and nondeterministically.

However, extensive research is required to establish a
methodology based on self-organization paradigm.  We are
only beginning research on this topic.  Our current major
research target is to establish a bottom-up computation
mechanism and methodology based on local information.
This paper presents a computation model called the chemi-
cal casting model (CCM) for problem solving using ran-
domized applications of local  operations and local  evalua-
tion functions, gives an example, and analyzes them.  A
major feature of this problem-solving method is that prob-
lems can be solved using one or a few simple production
rules and evaluation functions, both of which work locally,
i.e., on a small number of objects.  Constraint satisfaction
problems, such as graph coloring or the N queens problem,
are solved, or approximate solutions of optimization prob-
lems, such as traveling salesperson problems, are found by
this method.

To clarify the meaning of local operations and local
evaluation functions, a general framework of problem
solving is briefly introduced.  Problem solving, such as
optimization or constraint satisfaction, can be regarded as a
state-space search.  The initial state represents the problem
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and the final state of a solution.1   A problem can be solved
by moving the current state from the initial to final state by
applying operators  in an appropriate order.  The operators
may be local or global.  A local operator works on a small
number of elements in the current state and moves it to a
similar state in the search space.  A global operator, such
as a crossover in genetic algorithms, works on all the ele-
ments in the current state and moves it to a quite different
state.   A search in CCM is a (not completely) randomized
walk in a state-space using local operators.

Evaluation functions  are used in several problem solv-
ing methods.  They are not used in blind search methods,
such as depth-first or random searches.  Global evaluation
functions are used in hill-climbing methods and genetic
algorithms.  “Global” means that the value of the evalua-
tion depends on all the elements in the current state.
Search methods that do not use evaluation functions are
usually inefficient.  However, it is not easy for humans to
define global evaluation functions when the problem is
complex or multi-purposed.  The current state often falls
into a local maximum by methods that use local operators
and global evaluation functions, such as hill-climbing
methods.  Local evaluation functions bias the randomized
walk in CCM.

The basic paradigm of self-organization, which is the
philosophical basis of this work, is explained in Section 2.
CCM is explained in Section 3.  An example based on
CCM, the N queens system, is given in Section 4.  The
characteristics of CCM-based systems are analyzed in
Section 5.  Related works are mentioned in Section 6.
Finally, we summarize our conclusions.

2. The Basic Paradigm of Self-organization
Recently, self-organization has been drawing attention in
many research areas ranging from natural sciences to
humanities.  Several scientific research areas are concerned
with self-organizing systems, such as dissipative structure
theory [Pri 77], synerget ics [Hak 78, Hak 83], the theory of
molecule evolution [Eig 79], autopoiesis theory [Mat 80],
bio-holonics [Shi 88] and natural and artificial neural net-
works.  Jantsch [Jan 80] discusses a wide area of research
on self-organization from a unified philosophical view, and
indicates its direction for the future.  These theories give us
many suggestions for self-organization of computational
systems.  However, the main objects of these theories are
natural systems, and there is large unsought research area
between these systems and current computational systems.

Laszlo [Las 72] itemize four properties of natural sys-
tems.  We believe artificial self-organizing systems should

1 There may be no final state if the problem solving is an infinite
process, such as that in human society.  Even the state-space may
be impossible to be predefined in such cases.

also have these properties.  Thus, they are explained below
from our point of view.

(1) Holisticity : Natural systems are holistic and have irre-
ducible properties, such as mentioned in the previous
section.  This property may be undesirable for artificial
systems, but is inevitable.

(2) Self-stability: Natural systems preserve themselves in
changing environments.  This property is also important
for artificial systems.  Self-stable systems work well
even when there is a little noise (some errors) in the sys-
tem or in the input.  Although this property is important
in natural systems or automatic control theory, it is usu-
ally ignored in computational systems or computation
theories.2

(3) Self-organizability: “Natural systems create themselves
in response to the challenge of the environment.”  No
further explanation is given here because self-organiza-
tion has been mentioned earlier.

(4) Hierarchy: Both natural and artificial systems are hier-
archical.  However, the hierarchical structure of natural
systems is not as simple as tree structures that are com-
mon in artificial systems, nor they are static.  Such a
complex and dynamic (partial) hierarchical structure is
called heterarchy  [McC 65, Foe 84].

Although holisticity and self-stability are not mentioned
explicitly in the rest of this paper, they are important as
backgrounds of this work.

A generic macroscopic model of self-organizing sys-
tems [Kan 92a], which CCM is based on, is explained here.
The model is shown in Figure 1 .  This model can be
applied to a wide range of self-organizing systems, but not
all of them.  It models our target self-organizing computa-
tional system, a thermodynamic system that generates a
dissipative structure, and other varieties of self-organizing
systems.

Self-organizing systems generate order in a macro-
scopic level.  The degree of order should be measurable
because if it is not, we cannot claim objectively that the
system is self-organizing.  Thus, entropy or (global) order
degree, which is a measure of the order or degree of orga-
nization, should be defined.  If entropy is defined, it
decreases with time.  If order degree is defined, it increases
with time.  If the system is a thermodynamic system,
entropy must be “thrown away” from the system, because
it must satisfy the second law of thermodynamics which
states that entropy increases in a closed system.  Thus, it

2 Artificial systems based on system theories, such as automatic
controlling systems with negative feedback, are self-stable.
However, computational systems are not self-stable.
Computational systems may crash due to a very small bug or
unexpected input, which are types of noise .
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Figure 1.  Generic model of self-organizing systems

must be an open system in this case.1

There must be a set of laws or rules that (partially) con-
trol how the system changes, though they probably do not
control the system in a deterministic way for reasons
described later.  Probably, the rules work at a microscopic
level and their emergent behavior generates complex
macroscopic behavior of the system.  Thus, the system is
hierarchical (or heterarchical).  For simplicity in this paper,
rules, such as natural laws, are asserted as given and
unchanging.2   There will be various ways of describing the
laws or rules.  The laws can be writ ten as differential equa-
tions in some systems, and may be written as sequences of
operations in some others, and so on.

The growth of a self-organizing system is autonomous,
and, thus, its behavior is unpredictable, or it is observed as
nondeterministic or driven by noise that comes from the
outside.  However, these properties are not sufficient con-
di tions for self-organization, of course.  If the behavior is
predictable, i.e., observed as deterministic, it is not a self-
organizing system, but the organization is fully controlled
by external laws or rules.  In particular, in the case of com-
putational systems, deterministic systems are (indirectly)
organized by humans, because the rules, i.e., the programs,
are written by humans.  This does not constitute self-orga-
nizing computation.  In thermodynamic or other physical
systems, nondeterministic system development is called
bifurcation  or symmetry breaking [Pri 77, Pri 84].

3. Computation Model CCM
A computation model called the chemical casting model
(CCM) is described in this section.  This model defines the

1 However, systems with no such law, such as computational
systems, may be closed systems.
2 “Self-organization” does not mean growth of rules in this sim-
plified model.  However, growth of rules is considered to be
important in open systems and thus it should be included in our
future theory.

microscopic behavior of computation.  Its name is derived
from an analogy to chemical systems.3

3.1  Working Memory and Data
The system components in CCM are shown in Figure 2 .
We assert that the systems we are going to treat are discrete
both in space and time.  The reason why they are discrete
in space is that the model to be defined is a model of self-
organizing symbols; symbols that humans handle are dis-
crete, as has been pointed out in linguistics and semiotics
since Saussure [Sau 49].

The set of data to which the rules apply is called the
working memory.  A unit of data in the working memory is
called an atom .  An atom has an internal state and may be
connected to other atoms by links .  Links are similar to
chemical bindings, but the difference is that links (may)
have directions and may have labels (link names).  A set of
atoms connected by links can be called a molecule.4   Any
discrete data structure such as a list, tree, graph, or network
can be represented using atoms and links.
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Figure 2.  The elements of CCM

3.2  Reaction Rules
Reaction rules change the state of the working memory.
Thus, they define the operators.  The reaction rules are
written as production rules, such as chemical reaction for-
mulae or as rules in production systems.  Production rules
are used for the following reasons:

(1)  The production system is a suitable model for bottom-
up computation.

What we need is a model that uses bottom-up or emer-
gent computation.  Computation in forward-chaining
production systems, such as the one in OPS5 [For 81],

3 The word “program” is not used in this model because a pro-
gram is a whole and complete plan.  We use “cast” and “caster”
instead.
4 Although molecules possess a hierarchical structure, which is
important in a complex system, molecules currently play no
important role in CCM, so we make no further mention of them
in this paper.
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works in a bottom-up manner.  Thus, a refined produc-
tion system would be a good model.

(2)  The analogy to chemical reaction systems is useful.

We need strong analogies for self-organizing computa-
tional systems, because we are just starting research on
them.  The theory of self-organization [Pri 77] was
developed in certain chemical reaction systems, so the
analogy would give us many suggestions.

(3)  A production system is suitable for writing incomplete
programs.

A production system is a good way of describing an
incomplete system.  In the case of a procedural language,
incomplete programs usually violate the syntax or
semantics and, thus, are nonsense.  On the contrary, cer-
tain incomplete programs can be interpreted in a mean-
ingful way in a production system.

The syntax of reaction rules is similar to rules in normal
production systems.  The reaction rules are also similar to
reaction formulae in chemical reactions.  The syntax of
reaction rules is as follows:

LHS → RHS.

The left-hand side (LHS) and the right-hand side (RHS)
are sequences of patterns.  Each pattern matches an atom.
An atom is used for matching only once in a rule applica-
tion.  This means that no atom matches two or more pat-
terns on the left-hand side of a rule at once.  Not only sin-
gle atoms but atoms in a molecule can be matched here.
The rule can be applied when there is a set of atoms that
matches the LHS patterns.  If the rule is applied, the
matched atoms vanish and new atoms that match the RHS
patterns are generated.  For example, Figure 3 shows a toy
rule that removes oxygen and hydrogen molecules and
makes water molecules.

O O

H H

H H

hydrogen
molecules

oxygen
molecule

O O

H H

H H

water
molecules

Figure 3.  An example of a reaction rule

A pair consisting of a reaction rule and a set of atoms
that can match the patterns in the rule is called an instance.
An instance is said to be reacted  if its rule is applied with
its set of atoms.  The instance is an implementation-inde-
pendent  concept, and is different from both the concept of
an instance in conventional production systems1 and that in

1 Instances are not elements of a conflict set.  The system inter-
preter for CCM does not generate conflict sets.

object-oriented systems,
A rule may be reversible.  LHS and RHS can be

exchanged in a reversible rule.  A reversible rule is written
using a bi-directional arrow:  LHS ↔ RHS.

3.3  Local Order Degrees
Although we did not mention this above, another important
condition must hold to react an instance.  This is called the
instance order condition .  This condition is computed
using local order degrees  (LODs), an evaluation function.2

The existence of LODs is the most characteristic feature of
CCM among production-system-based models of computa-
tion.  The value of an LOD is usually an integer or a real
number.  LODs are defined in one of the following two
forms.

(1) Self order degree   o(e):  defined for an atom e.

(2) Mutual order degree  o(e1, e2):  defined for a pair of
atoms  〈 e1 , e2 〉.
The sum of the LODs of the atoms matching at least

one of the patterns in the rule is called the instance order
degree (IOD).  The instance is reacted only when the IOD
is not decreased by the reaction.3  If the LOD is defined as
a self order degree, the IOD is defined by the sum of the
LODs of the matched atoms.  The IOD before the reaction
is computed and the IOD after the activation is estimated,
then they are compared.  The instance is activated only if
the latter is larger.  If the LOD is defined as a mutual order
degree, the IOD is defined by the sum of the LODs of all
the pairs of matched atoms.  The comparison method is the
same as for the self order degree.

In CCM, instances are reacted successively when pos-
sible.  If there is no instance whose IOD is increased by the
reaction, the system temporarily terminates.  However, the
system begins to work again when data in the working
memory is modified or data is added and can react an
instance.

3.4  Scheduling Strategies
The behavior of the system might not be determined
uniquely by the instance order condition.  This means that
more than one instance can be reacted at the same time.
The order of reaction is not predetermined in CCM.  They
may be reacted in any order, or they may be reacted in par-
allel, if they do not rewrite the same atom.  Different orders
of computation may cause different results.  However, both
results will be as expected, regardless of the order of com-
putation.4   However, if two instances contain the same
atom, they may not be reacted in parallel.  Thus, if a set of

2 LODs may be analogical to chemical binding energy of atoms.
3 This condition, IODbefore  ≤ IODafter , may be replaced by the
following condition: IODbefore  < IODafter .
4 LODs must be defined to satisfy this condition.
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rules is well-defined, an ordered state indirectly induced by
the LODs will be organized nondeterministically and in a
self-organizing manner .

The system interpreter selects the instance whose
instance order condition is to be tested and which may be
reacted.  Although instances are selected autonomously,
the user or software can control the selection macroscopi-
cally by specifying a strategy.  Strategies for the selection
are called scheduling strategies  in CCM, because instances
can be regarded as microscopic processes.  Scheduling
strategies are related to conflict resolution strategies in
conventional production systems.  The strategies can be
classified as sequential strategies and parallel strategies.
Four types of sequential strategies are proposed by Kanada
[Kan 92a].  The following two are particularly important.

(1) Mathematical random strategies (MR strategies) :
Scheduling strategies that select instances using pseudo-
random numbers or some other mathematical method of
generating randomness (or noise) are called mathemati-
cal random strategies.

(2) Systematic strategies (S strategies) :  Scheduling strate-
gies that select instances in systematic methods are
called systematic strategies.  Although they do not select
instances randomly, they do not refer to the logic of the
system, i.e., selection is made autonomously.  Thus the
system can still be regarded as nondeterministic.

S strategies are less computation intensive.  However, they
may cause limit cycles (loops).  MR strategies do not cause
limit cycles, even if the user pays no attention to them.
This is a major merit, and thus MR strategies are regarded
as the standard strategies in CCM.  Parallel strategies will
make CCM-based computation appears more like chemical
reactions.  However, these are beyond the scope of this
paper.

4. Example: The N Queens Problem
The N queens system, an CCM-based system for finding a
solution to the N queens problem, is shown in this section.
The performance of its trial executions is also shown.  The
N queens problem is an extension of the eight queens prob-
lem.  The N queens system is tried because, although the
target of our methodology is to develop complex systems,
we have to start with a simple system, and this system has
several characteristics that will probably lead us to a better
understanding of complex systems.

4.1  Reaction rule and local order degree
Figure 4  shows the visual rule and LOD of the N queens
system.  This system contains only one rule and a defini-
tion of the mutual order degree, o(x, y), for queens.  This
rule swaps the rows of two queens (Queen2 and Queen3 in

Figure 4), see Figure 5 .1  Queen1, which can be called a
catalyst , remains unchanged by the swapping.  The role of
the catalyst is explained later.  No link is used in this rule.
The value of LOD o(x, y ) is defined to be higher (i.e., 1)
when queens x  and y  are not diagonally oriented, and lower
(i.e., 0) when they are diagonally oriented.2

c2, r2

c3, r3

c3, r2

c2, r3

Queen1:

Queen2:

Queen3:

Queen2:

Queen3:

■  Local order degree  (mutual order degree)

■  Reaction rule
rule Swap

 o(x, y)  = 0 if x.column – y.column = x.row  – y.row or
   x.column – y.column = y.row  – x.row,
 1 otherwise .

The local order degree is defined between two queens.

Queen1:

rowcolumn

Figure 4.  A rule and LOD of the N queens problem
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Q

Q
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Q

Q

Q
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Figure 5.  The meaning of the N  queens rule

If the rule is executed with an appropriate initial state,
the system repeats the selection of three queens and reac-
tion of the instance.  The initial state must satisfy the fol-
lowing condition: there is only one queen in each row and
each column.  The easiest layouts of queens that satisfy
this condition are for all queens to be put on a diagonal
line.  If this condition holds, it holds at any time in the sys-
tem because the reaction preserves the condition.  The sys-
tem stops when a solution to the N  queens problem is
found.3

1 The LHS and RHS of this rule can be reversed and this rule can
also be a reversible rule, because the LHS and RHS are symmet-
ric, i.e., they are identical if variables r2 and r3 are exchanged.
2 Shimizu and Hayashi [Shi 90], and Sosic [Sos 91] indepen-
dently developed methods of solving the N queens problem by
swapping columns.  However, a global evaluation function that is
equal to the GOD, explained in §5.1, is used in these methods.
3 It can be proved that this caster (program) is correct, that means,
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A more detailed semantics of a reaction is illustrated in
Figure 6 .  The instance selections and reaction are re-
peated while possible.  Because there is only one rule, the
system interpreter does not have to select a rule.  In this
rule, the mutual order degree between the queens to be
swapped, i.e., Queen2 and Queen3, is not changed.  Thus,
the system interpreter decides whether to react the instance
or not, referring to the other two LODs displayed in the
figure.  The instance is reacted in this case, because its
instance order condition holds.  This shows the reason why
the catalyst, Queen1, is necessary.  The LODs are not
changed if the rule contains only the queens to be swapped,
and so the system does not work.

Q3

Q2

Q1(1) Compute
 LOD

Q3

Q2

Q1

(3) Exchange
 columns of
 queens

o(Q1, Q3)
   = 0

o(Q1, Q 2) = 1

o(Q1, Q 3)
= 1

o(Q1, Q 2)
= 1

The computation of IOD
before the reaction.

The computation of IOD
after the reaction.

(2) Compute
 LOD

Figure 6.  Computation of the IOD in the N queens rule

4.2  Performance
We have developed a computation language, SOOC, and
its interpreter.1   The rules and LODs of several problems
have been developed and executed using SOOC.  The
performance of the N queens system is summarized below.

Although a solution is not always found in general by
this method, because the search is stochastic and not
exhaustive, our experiment shows that the problems never
fail to be solved, and are solved in polynomial order time
in average.  The performance is fairly good with no extra
device, probably because the problem is easy to solve.

The average number of matches, i.e., the number of
executions of LHS of rules, and the average number of
reactions until a solution is found have been measured for
N ≤ 50 using an S strategy.  The initial layouts of queens
are random (generated using pseudo-random numbers),
and runs that fall into limit cycles are ignored.  The results
are shown in Figure 7 .  All values shown in this figure are

a solu tion is obtained every time the system terminates.
However, it is much easier to write a caster that tests the correct-
ness of the result.
1 We do not call SOOC (Self-Organization-Oriented Computing)
a programming language because it is not a language to describe
a complete procedure or a complete specification for computa-
tion. SOOC is a textual language.  The current SOOC (SOOC-92)
compiler and interpreter are written in Common Lisp.

averages of ten executions.  The execution time is approx-
imately proportional to the number of matches.  Thus, the
order of execution time is estimated to be O(N4.6 ).  The
performance using an MR strategy is not shown here, but
the trend is almost the same as the S strategy.

If backtracking is used to solve this problem, the order
of execution time is exponential, so the CCM-based
method is much faster.  However, this simple CCM-based
method is slower than other more intelligent methods, such
as those shown in Yagrom and others [Yag 64, Cha 74,
Shi 90, Sos 91], which find a solution in O(N).
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Figure 7.  Average computation time of the N queens
system (using an S strategy)

4.3  Other Examples
Several optimization and constraint satisfaction problems
have been solved by CCM-based computation.  They
include traveling salesperson problems (TSP), integer pro-
gramming problems, graph coloring problems [Kan 92b],
and sorting.  The results are summarized in Table 1 .  This
table shows that simple problems can be solved using only
one or a few simple rules and only one LOD by CCM.

5. Characteristics of CCM-based Computation
This section explains the characteristics of CCM-based
computation after defining the global order degree.

5.1  Global Order Degree and its Stochastic
Process

The global order degree (GOD) of an CCM-based system
is the sum of the LODs.2, 3   If the LOD is defined as the
self order degree, the GOD is the sum of the LODs of all
atoms.  If the LOD is defined as a mutual order degree, the

2 GOD is not computed nor used in CCM, but it may be used in
macroscopic models.
3 GOD may be analogical to total energy or entropy of chemical
systems, and may be analogical to energy of Hopfield networks.



HICSS-27 — Emerging Paradigms (Revised version),  93.9.29 (Original version — (C) Copyright 1994 by IEEE)

7

Table 1.  Current Applications of CCM
Rules and LODs Performance

Classification Problem Number
of rules*

Number
of LODs

Time Solution quality

Optimiza-
tion

TSP 1 1 O(N3) 97 times opti -
mum out of 100
trials (N = 10)

NP-
hard

0–1
Knap-
sack

1
(or 2)

1 O(N2) 45 times opti -
mum out of 100
trials (N = 20)

N
Queens

1 1 O(N4.6 ) –

Constraint
satisfaction

Graph
(or map)
coloring

1 1 – –

P-hard Sorting 1 1 O(N2) –

  * Rules for working memory initialization are not counted.

GOD is the sum of the LODs of all pairs of atoms in work-
ing memory.  In the case of the N  queens system, there are
NC2 (= N(N–1)/2) pairs of queens.  Because each LOD is 0
or 1, the minimum and maximum values of the GOD are 0
and NC2.  The GOD is at a maximum at the solutions and
only in these states, because the GOD is equal to the num-
ber of satisfied unit constraints in this system.1   The GOD
is at a minimum when all the queens are on a diagonal.

A GOD is a function of time.  It may change when an
instance is reacted.  The time can be measured by the num-
ber of reactions since the system began to work.  An
example of the GOD transitions in the eight queens system,
measured using SOOC with an MR strategy, is shown by
the unshaded line in Figure 8.  The solution was found in
88 reactions in this trial.  The rule used in this measure-
ment computes the GOD explicitly.  The shaded line in this
figure is explained in Section 5.3.
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Figure 8.  An example of GOD transition in the eight
queens computation

1 CCM-based systems maximize the GOD when their target is to
solve constraint satisfaction or optimization problems.  However,
they may work in other way if their target is dif ferent.

Computation can be regarded as a stochastic process in
CCM even when an S strategy is used.  Figure 8 illustrates
the meaning of this statement.  The following three states
occur in this order in the computation process of CCM, if
appropriate rules and LODs are given.

(1) Strongly non-stationary state:  The state in which the
probability distribution rapidly changes when a reaction
occurs.

(2) Quasi-stationary state:  The state that the probability of
the solution state, p( gmax), increases when a reaction
occurs, where gmax  is the maximum value of the GOD (=
NC2), but that the ratio of other states,  p(g)/(1 – p(gmax))
(g  = gmin, …, gmax–1), are almost constant when a
reaction occurs, where gmin is the minimum value of the
GOD (= 0).

(3) Termination state (Stationary state):  The state that
p(gmax) is 1.  This is the limit state when t  → ∞.

In Figure 8, the quasi-stationary state is estimated to
begin when t  (number of reactions) is around 10.  The
above states can be modeled by a Markov chain [Kan 92b].

5.2  Conflict and Cooperation in CCM
CCM-based systems can be put into two categories.

(1) Cooperative system; where no reaction will decrease
the GOD.

(2) Conflicting system ; where a reaction may decrease the
GOD.

Cooperative systems are called such because reactions
cooperate toward the local or global maximum of the
GOD.

The N  queens system and the graph coloring system
mentioned in Section 4.3 are conflicting systems, unless
the IOD is the same as the GOD.  Thus the GOD does not
increase monotonically as shown in Figure 8.  Some sys-
tems have little conflict while others have considerably
more.  However, the defini tion of the degree of conflict is a
task for the future.  On the contrary, the GOD monotoni-
cally increases in a cooperative system.  Examples of
cooperative systems are the TSP system, the 0–1 Knapsack
system and the sorting systems mentioned in Section 4.3.

5.3  Variability of Locality
The locality of computation can be controlled by adding
catalysts to rules or composing two or more rules.  Rules
with less or more locality work differently because the
value of IOD is used at reaction.  This characteristic of
CCM-based systems is called the variabil ity of locality.
The effects of controlling the locality in cooperative and
conflicting systems are explained below.

In a cooperative system, the local maxima of the GOD
can partially be avoided by reducing the locality by com-
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posing rules.  This property is explained in the next sec-
tion.

In a conflicting system, to add catalysts to a rule makes
the system less conflictive and decreases the average num-
ber of reactions required to find a solution.  If more cata-
lysts are added, the rule refers to a more global state.  For
example, the rule in the N  queens system contains a cata-
lyst.  If this catalyst is removed, the system does not stop
even when a solution is found.  However, this system per-
forms a random search.  An example of GOD transition in
a random search is shown by the shaded line in Figure 8.
On the contrary, more catalysts may be added to the rule.
However, if more catalysts are added, the execution time
for the rule matching increases, thus the efficiency of the
system is reduced.

Figures 9  and 10 shows the effect of adding or remov-
ing catalysts in the N  queens system.  The average and
standard deviation of GOD in the quasi-stationary state as
functions of the number of catalysts, Nc, are shown in
Figure 9.  The average becomes higher and the standard
deviation becomes lower when Nc increases.  This means
that catalysts bias the search: a system with more catalysts
searches among the states where the GOD is higher, thus
the computation is more efficient.  The performance as a
function of Nc, measured on a Macintosh IIX computer, is
shown in Figure 10.  The data are not given for Nc  = 0
because the execution does not stop in this case.  Although
the number of reactions decreases when Nc increases, the
execution time, which is approximately proportional to the
number of matches, increases when Nc > 2.
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 Figure 9.  Relation between number of
catalysts and global order

Adding catalysts decreases the possibility of escaping
from local maxima.  This property is explained in the next
subsection.  Adding catalysts also makes it impossible to
solve the problem for small N  in the N queens problem,
because the rule cannot produce a solution if the number of
matching patterns in the LHS is greater than N.  Thus,
there is an optimum number of catalysts.

The rule with catalysts can sometimes be generated not
only by adding catalysts to the rule, but also by composing
a rule with no catalyst, and thus rule composition can be
used for control ling rule locality.  Figure 11  shows the
composition of a rule with a catalyst using a rule without a
catalyst in the N queens system.  An application of the rule
with a catalyst, shown in Figure 4, moves the current state
from State 0 to 3.  The three contiguous applications of a
rule without a catalyst also move the current state from
State 0 to 3.  In the first step, the columns of Q1 and Q2
are swapped.  The columns of Q2 and Q3, and the columns
of Q1 and Q2 are swapped in the following steps.  Rules
with two or more catalysts can be composed in the same
way.
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Figure 10.  Relation between number of catalysts and
performance
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— the composed rule
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Figure 11.  Composition of a rule with a catalyst using a rule
without a catalyst

5.4  Escaping from Local Maxima
Conflicting and cooperative systems behave differently in
regards to local maxima.  Thus, the behavior of conflicting
systems is explained first, and then that of cooperative sys-
tems is explained.

A conflicting system, such as the N queens system but
not all conflicting systems, never falls into the local max-
ima of the GOD and can reach the global maxima, i.e.,
reach solutions, even when using an S strategy.  This
behavior can be regarded as emergent.
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Here, a local maxima of GOD means that a state S such
that GOD(S) ≥ GOD(S’) holds for any state S’ derived
from S by a reaction.  An example of a local maximum in
the six queens system is shown in Figure 12. 1  The maxi-
mum value of the GOD is 15, and that of the state shown is
14.

Q

Q

Q

Q

Q

Qdiagonal
orientation

 1 2 3 4 5 6

Figure 12.  An example of a local maximum in the six
queens system

If a hill-climbing method is used for finding the maxi-
mum value of the GOD, the search may fall into a local
maximum.  However, the CCM-based system can escape
from local maxima because there is always an instance that
can be reacted even when the system is in a local maxi-
mum.2  For example, in Figure 12, if the queens in the
sixth, fifth and fourth columns are matched to Queen1, 2
and 3 of the rule in Figure 4 respectively, the reaction
occurs and the system escapes from this local maximum.

Reducing the locality by adding catalysts decreases the
possibility of escaping from local maxima.  For example,
the state shown in Figure 12 is a local maximum if a rule
with four catalysts, i.e., a rule with six patterns, is used,
because the IOD computed in this rule is equal to the
GOD.  On the contrary, in cooperative systems, reducing
the locality by adding (but not replacing) rules that are
compositions of the original rule usually increases the pos-
sibility of escaping from local maxima.  This happens, for
example, in optimization problems such as the TSP system
or the 0–1 Knapsack system.

6.  Related Work
Katai et al. [Kat 93] proposes a method of constraint satis-
faction using autonomous decentralized systems.  This
research is motivated by synergetics.  A complicated hier-
archical mechanism is used in this method.  Our research
targets a simpler mechanism.

CCM, genetic algorithms (GA), neural networks such

1 Sosic [Sos 91] states that there is no local maxima when N ≥
1000.
2 A conflicting system may have cooperative local maxima,
where no reaction decreases the GOD.  Thus, the condition that
the system is a conflicting system is not a sufficient condition for
this charac teristic.

as Hopfield’s [Hop 85] and constraint programming all
target algorithm-less computation.  CCM and GA are simi-
lar in that both perform stochastic computation, and that
data are converted and tested by evaluation functions.
However, they differ in that the evaluation functions in GA
use global information, but those in CCM use local infor-
mation only.  GA is applicable only when a specification
can be written.  Hopfield networks also work with global
evaluation functions called energy functions, though they
are not computed explicitly.  In constraint programming,
symbolic constraints are usually satisfied by constraint
propagation.  The N queens system in CCM suggests an
alternative method of constraint satisfaction, which is
much easier to program and probably more robust.

CCM-based systems that use a parallel scheduling strat-
egy have similarity to the chemical abstract machine
[Ber 90] which is also based on a production system.
However, their target is not self-organization but the build-
ing of a semantic model for parallel computation, and it
does not use evaluation functions.  A set of rules and LODs
in CCM can also be regarded as a description of a proba-
bilistic algorithm [Bra 88].  However, our target is quite
different from that of conventional probabilistic algo-
rithms.  A probabilistic algorithm must have correctness,
which is meaningful only when there is a specification of
the algorithm.  On the contrary, our target is computation
without complete specification.

Other approaches related to the self-organization of
computational systems include self-organizing neural net-
works, artificial life, and connectics [Tak 91].

7. Concluding Remarks
The CCM-based systems shown in this paper can be inter-
preted as self-organizing systems in a sense.  However,
they are still far from our goal of real self-organizing sys-
tem, which is even hard to be defined.  This paper con-
tributes to this grand chal lenge in the following points.

(1) The self-organization paradigm is explained, and the
relation between this paradigm and computation from
local information to global result via emergent behavior
are explained.

(2) A computation model, CCM, which will lead us to a
better understanding of self-organizing systems, is pro-
posed, and a “programming” style using local operations
and local evaluation functions is shown.

(3) An emergent property that a solution can be found
without falling into local maxima is reported using the N
queens system, for example.

(4) Methods of controlling the locality of computation by
adding catalysts to rules or composing rules in CCM are
proposed, and their effects are explained.
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The main focuses of future work are as follows.  First,
the N queens problem and other problems mentioned in
this paper are very simple and basically closed problems,
that means we can write specifications for these problems.
We have to develop CCM-based open systems for prob-
lems that are not just constraint satisfaction nor optimiza-
tion problems, and to observe and to analyze more com-
plex emergent properties in those systems.  Second, rules
and order degrees are invariant in the model shown in this
paper.  However, not only the rules but also the goal or tar-
get of computation, which is related to the value of evalua-
tion functions, may change during computation in real self-
organizing systems.  Thus, CCM should be extended to
express self-organization or reflection of rules or LODs.
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