
ICEC ’95, (C) 1995 by IEEE, 95.8.21 6:03 PM

1

1. Introduction
Most combinatorial optimization problems (COPs) in
Operations Research and constraint satisfaction prob-
lems (CSPs) in Artificial Intelligence are classified as
NP-complete or NP-hard problems. They are some-
times impossible to be solved in polynomial time even
when finding an approximate solution [1]. However,
these problems are still static. Constraints and objec-
tive functions, included in these problems, are not
varied while solving them. Real-world problems are
not necessarily expressed by static constraints and ob-
jective functions. New information may be added or
preexisting information may be dynamically changed
by environmental change while solving problems.

Kanada [4, 6] proposed a computational model
called CCM (Chemical Casting Model), which aims to
solve problems by using self-organizing or emergent
computation [2] in such situation described above.
Complete information, which concerns the problem
solving, cannot be grasped beforehand in such real-
world problems [3]. However, conventional combi-
natorial problem solving methods, including branch-
and-bound methods [13], simulated annealing, evolu-
tionary computation, and so on, usually requires com-
plete information. These methods require an objective
function, which is defined using global information, to
be specified completely. These methods are consid-
ered to be weak when the environment changes. CCM
is developed for computation based on local, partial
and incomplete information.

CCM has been applied to classical CSPs and COPs.
We have applied CCM to such closed and fully in-
formed problems, because real-world problems are
complex and we had to add ability to solve complex
problems to CCM. CCM has been applied to the N-
queens problem [6], coloring and fuzzy coloring of
graph vertices or maps [7], the traveling salesperson
problem [5], and so on. Small-scale problems are
proved to be solved using CCM with less chance to fall
into local maxima or non-solution final state, because

of emergent nature of CCM [6]. However, larger and
more complex problem cannot be solved by too local
computation, sometimes because it takes too much
CPU time, or because the computation can still be
trapped by local maxima. Thus, methods of organizing
local parts of computation into non-local fragments
must be developed. A method of controlling locality
to reduce the computation time by adding or removing
catalysts is proposed [6]. However, this method is not
universal and does not solve the problem of local
maxima in some cases.

A method of solving combinatorial problems using
CCM*, which is an extended version of CCM, solves
this problem. A mechanism of organizing computation
using rule composition is added in this model. By
composing new rules from given rules dynamically
and randomly, this method makes it possible to escape
from local maxima, which cannot be escaped from by
applying the original rule. Another improvement to
CCM, a type of simulated annealing, is also proposed
and compared with CCM*. CCM and two possible
improvements to CCM are explained in Section 2. A
method of solving complex combinatorial problems
using CCM* and its application to COPs are explained
in Section 3. The results of its application to 0–1 inte-
ger programming problems are shown in Section 4.
Related work is mentioned in Section 5. The conclu-
sion is described in Section 6.

2. Computational Model CCM and Two
Extensions

This section explains computational model CCM and
two extensions of CCM to solve complex problems.

2.1 Chemical Casting Model
CCM is a computational model based on a production
system. Production systems are often used for devel-
oping expert systems or modeling human cognitions.
However, CCM differs from conventional production
systems in the following two respects. Firstly, evalua-

Combinatorial Problem Solving Using Randomized
Dynamic Composition of Production Rules

Yasusi Kanada
Tsukuba Research Center, Real World Computing Partnership

Takezono 1-6-1, Tsukuba, Ibaraki 305, Japan
E-mail: kanada@trc.rwcp.or.jp, WWW: http://www.rwcp.or.jp/people/yk/

ABSTRACT
The present paper proposes a method of solving combinatorial problems using randomized dynamic rule
composition. This method is called CCM* and is based on a computational model called Chemical Casting
Model (CCM), which is a rule-based computational model for emergent computation. CCM was proposed
by the author toward solving dynamic, open and incompletely specified problems using a few simple rules
and evaluation functions. By composing a rule from a given production rule dynamically and randomly,
CCM* makes it possible to escape from local maxima, which cannot be escaped from by applying the
original rule. This method is compared with the original CCM and another extended version of CCM, i.e.,
CCM with simulated annealing. 0–1 integer programming problems are solved using these methods. Our
experiments show that CCM* performs much better than both the original and annealed CCM. In addi-
tion, suboptimal solutions can be found in less time than a branch-and-bound method.

ICEC ’95, (C) 1995 by IEEE, 95.8.21 6:03 PM

2

tion functions, which are called local order degrees
(LODs), are evaluated when applying rules. Secondly,
stochastic control or randomized ordering of rule ap-
plications, is applied. Rules and functions are com-
puted only using local information.

The system components of CCM are shown in
Figure 1. The set of data to which the rules apply is
called the working memory (WM). Rules and func-
tions change the state of WM. Thus, they determine
the behavior of the system. The collection of rules and
functions, which is usually called a program, is called a
caster in CCM.1 A unit of data in the WM is called an
atom. An atom has a type and an internal state, and
may be connected to other atoms by links. Links are
analogous to chemical bonds with the difference that
chemical bonds have no direction but links may have.

3

12

10

4

2

1

5

7

8

3

14

10

4

1

5

7

8Working
memory
(WM)

Reactions

Atom
(atomic data) Molecule

Rules and functions
(Reaction rules and
local order degrees)

Link

2

Figure 1. The elements of CCM

Reaction rules change the state of WM locally.
“Locally” means that the number of atoms referred by
a reaction rule is small.2 The reaction rules are written
as so-called forward-chaining production rules, such as
chemical reaction formulae or as rules used in expert
systems. The abstract syntax of reaction rules is as
follows: LHS → RHS. The left-hand side (LHS) or
“reactants,” and the right-hand side (RHS) or
“products” are sequences of patterns. For example, the
following reaction rule swaps the internal states of two
(unlinked) atoms, A1 and A2:

A1(S1), A2(S2) → A1(S2), A2(S1).

The internal states are represented by S1 and S2 here.
A reaction rule can be activated when there is a set

of atoms that matches the LHS patterns. If a reaction
rule is activated, the matched atoms vanish and new
atoms that match the RHS patterns appear. So, an
atom may be modified, bonded to another atom, re-
moved, or created by a reaction rule. Just one reaction
rule is enough for solving a simpler problem such as
the graph vertex coloring problem or the 0–1 integer
programming problem. There will be two or more
reaction rules in more complex systems, in which there
are two or more ways of changing atoms.

Local order degrees (LODs) are evaluation func-
tions (local objective functions). They are defined us-
ing only local information, and have a larger value

1 The word “program” is not used in CCM because a
“program” means a whole and complete plan.
2 Because (physical) distance is not (yet) introduced in CCM
as opposed to systems such as a chemical reaction system,
“locally” does not mean distance is small.

when the local state of the WM is better. An LOD
may be regarded as a negated energy. Thus, it is
analogous to bonding energy in chemical reaction sys-
tems. Although LODs can be built into normal pro-
duction rules, the separation of LODs from rules
causes flexibility. For example, performance im-
provement by adding catalysts [6] or rule composition
is made possible by this separation.

A reaction takes place when the following two
conditions are satisfied. Firstly, there is an atom that
matches each pattern in the LHS. Secondly, the sum
of the LODs of all the atoms that concern the reaction,
i.e., that appear on either side of the reaction rule, is
not decreased by the reaction. Reactions repeatedly
and stochastically (randomly) occur while the above
two conditions are satisfied by any combination of a
rule and atoms. The system stops when such a combi-
nation is exhausted. However, reactions may occur
again if the WM is modified because of changes of the
problem or the environment. Thus, the system using
CCM can solve the dynamical problems.

In general, there may be two or more combinations
that satisfy both conditions at once. There are two
possible causes that generate multiple combinations.
One cause is that there are two or more combinations
of atoms that match the LHS of a rule. The other cause
is that there are two or more rules, under which there
are patterns in the LHS that match atoms. In each
case, the order of the reactions (the selection order of
such combinations) and whether they occur in parallel
or sequentially can be determined stochastically. The
CCM-based systems that we have developed uses ran-
dom numbers for selecting rules and atoms. We have
also experienced both sequential and parallel process-
ing [8] of CCM-based systems. A single caster can be
used both in sequential and parallel processing.

2.2 Two improvements to CCM
There are at least two possible improvements for CCM
to solve complex combinatorial problems.

The original CCM has the following two draw-
backs. One drawback is that a CCM-based system
may easily be trapped by a local maximum. The other
drawback is that computation in a CCM-based system
may sometimes be very inefficient, because it refers
only local information, i.e., only a few objects. The
system may cause reactions that do not help solve the
problem and may waste CPU time.

The first possible improvement, which remedies the
first drawback, is simulated annealing. In the original
CCM, a reaction never occurs when the difference of
the LOD sums of RHS and LHS decreases. In the an-
nealed CCM, a reaction is defined to occur in certain
probability even when the difference decreases. The
relation between the difference and the probability is
defined by a Sigmoid function (f(x) = 1 / (1 + e–x/T)),
similar to the Boltzmann Machine, as shown in Figure
2. The temperature, T, is decreased toward zero while
computing, following an appropriate scheduling. If the
initial temperature is zero, this mechanism is almost
the same as the original CCM.3

3 The behavior is different only when the difference is zero.

ICEC ’95, (C) 1995 by IEEE, 95.8.21 6:04 PM

3

-20 -10 0 10 20
Difference of LOD sums

0
0.25

0.5
0.75

1
1.25

R
ea

ct
io

n
pr

ob
ab

il
it

y
T=0
T=1
T=10

Figure 2. Reaction probability in the annealed CCM

Optimum solutions can probably be found by the
annealed CCM. However, this extended version is
expected to take much more time than the original
CCM, which is already slow, because this simulated
annealing is very near-sighted, i.e. , no non-local state
transition can occur. This method has another problem
that, because the temperature is a global parameter, its
existence opposes the policy of CCM, i.e., local-
information-based computation.

Both drawbacks described above can be remedied
by the second possible extension, i.e., dynamic rule
composition. If the original rules are applied twice or
more times without calculating the sum of LODs in
between, and compare the sum after the application to
the sum before, both local maxima and inefficiency
can be avoided. The system can skip over a valley of

MOD, as illustrated in
Figure 3. This proc-
ess is nearly equiva-
lent to a reaction
caused by a rule that
is a composition of
the original rules
twice or more times.
This conceptual rule
composition takes
place dynamically and
randomly. 1 This im-
proved version of
CCM is called CCM*.

3. Solving Complex Combinatorial Prob-
lems Using CCM*

This section explains the principle of problem solving
using CCM and a method of solving a COP.

3.1 Principle of problem solving using CCM
Problem solving can be regarded as activity to find a
better or best state in some sense. The meaning of
words, better or best, may be different among prob-
lems to be solved, and “state” may mean macroscopic
(global), microscopic (local) or mesoscopic state. In
CCM, LODs define what is a locally better state, and
reaction rules determine the paths of transition to
neighbor states, or define the neighbor relationship.

A mean value of LODs is called a mean order de-
gree (MOD), which can be regarded as a negated mean
energy.2 Although CCM-based systems do not com-

1 The composed rule is not reused. Thus, this is not a learn-
ing mechanism.
2 Kanada [6] used the total of LODs, called global order
degree (GOD). GOD has been replaced by MOD, because

pute MODs, they operate so as to increase MODs or
sums of LODs stochastically. The data in the WM can
be divided into small parts or into large parts, or into
parts of any other scale. MODs can also be defined in
each scale. Figure 4 illustrates the relation between
MODs of different scales. They may conflict, e.g., the
macroscopic MOD can decrease when a microscopic
MOD increases, and vice versa. A CCM-based system
is called a cooperative system if no reaction that de-
creases an MOD can occur, and it is called a conflict-
ing system if a reaction that decreases an MOD can
occur [6]. Cooperative systems perform hill-climbing.

Although different MODs may behave differently,
MODs increase in average in every scale if the LODs
and rules are defined properly. Thus, CSPs can be
solved if a state in which more constraints are satisfied
is defined to have a higher MOD value (or to be bet-
ter), and COPs can be solved if a more optimized state
is defined to have a higher MOD value. Figure 5
shows an example time sequence of global MOD in the
eight queens problem [6]. The MOD sometimes de-
creases, because this is a conflicting system. However,
experiments show that this system never fails to find a
solution.

12

4
3

7

8

1

10

28

1

4

2
5

Microscopic
MOD

 : increasing

Macroscopic
MOD

 : increasing

Mesoscopic
MOD

 : increasing

may
conflict

Figure 4. Behavior of CCM/CCM*-based systems

0 20 40 60 80 100
Number of reactions (t)

0

0.2

0.4

0.6

0.8

1

M
O

D

Figure 5. An example of a time sequence of MODs

A certain solution can probably be found even
when the global optimum condition is not known, be-
cause the system works on local information. Thus,

GOD has the same drawback as global objective functions
used in conventional evolutionary computation and other
methods. GOD cannot be properly defined in open or par-
tially-informed situations.

Multiple
applications of

rule at once

M
O

D

Valley of
MOD

Successive
reactions

Figure 3. Skipping over a
valley of MOD by a rule

composition

ICEC ’95, (C) 1995 by IEEE, 95.8.21 6:04 PM

4

open or dynamically changing problems may be solved
using CCM. However, it is not concluded that all the
constraints can always be satisfied, a global optimum
solution can always be found, or the system always
terminates at such a “goal” state by this method, be-
cause the system may be trapped by a local maximum
and there is no assurance that the system terminates in
finite time.

The principle described in the present section can
be applied to wide range of problems, including CSPs
and COPs. The 0–1 integer programming problem is
used for example, because currently this is most suc-
cessful as CCM*-based problem solving.

3.2 Optimization using CCM
Integer programming (IP) problems [13] are con-
strained linear programming (LP) problems in which
values of variables are limited to integers. IP problems
are NP-hard. Thus, the scale of solvable problems is
limited, although good heuristics for branch-and-bound
methods [13] are known.

The following type of IP problems, in which the
variable values are restricted to 0 or 1, is called the 0–1
IP problem:

Maximize objective function F = ∑
j = 1

n
cj xj ,

subject to ∑
j = 1

n
aij xj ≤ bi (i = 1, 2, …, m), where

xj (j = 1, 2, …, n) are variables, xj ∈ {0, 1}, and
aij , bi , and cj are constants.

This problem can be solved as follows. One of the n
variables is selected randomly, and its value is
switched to the other value if and only if this switching
makes the objective function value (F) better. This
process is repeated until no more switching will occur.

The content of the WM, the reaction rule, and the
LOD are explained below. The WM contains an atom,
Sum (of type sum), which contains the objective func-
tion value: F, a list of the values of the LHSs of the
constraints: C, and a list of the values of the RHS of
them: B. The ith element of C (or B) is written as Ci
(or Bi). A simple reaction rule shown in Figure 6,
which is the only rule, is used. This rule selects an
atom Var of type var, and changes its value X to 1 – X,
where X ∈ {0, 1}. Then the rule updates the values of
the objective function and the LHSs of conditions in
Sum.

An LOD is defined only for Sum, or for objects of
type sum.

Os(Sum) =
Sum.F if Sum.Ci ≤ Sum.Bi for all i ∈ {1, 2, …, m}
– ∞ otherwise

An LOD is not defined for variables: the LOD for ob-
jects of type var is always zero.

When the above system is activated, a reaction oc-
curs only when the objective function value, which is
equal to the total of the LODs, increases by the reac-
tion. Thus, although this system works on local infor-
mation, i.e., refers only a few objects, in each reaction,
this is a cooperative system and realizes a simple hill-
climbing method.1 As a result, the system easily falls
into a local maximum. It is even difficult to find a
nearly optimum solution. This problem may be solved
by supplying a more elaborate rule. However, this
reduces the advantage of CCM, that a problem can be
solved by a combination of a simple rule and a simple
LOD. Thus, CCM* is used.

3.3 Detailed method of CCM*
A detailed method of problem solving using CCM* is
explained here. This method is not specific to IP
problems, but not very general. Both the number of
reaction rules and the number of different composi-
tions are asserted to be one. Different compositions
mean compositions that generate rules that have differ-
ent functions. For example, the swapping rule de-
scribed in Section 2.1 can be composed in two ways:

A1(S1), A2(S2), A3(S3) → A1(S2), A2(S3), A3(S1).

A1(S1), A2(S2), A3(S3), A4(S4) →
A1(S2), A2(S1), A3(S4), A4(S3).

The first rule rotates the internal states of three atoms,
and the second rule swaps the states of two pairs of
atoms. The functions of these rules are different. So,
there are at least two different compositions, and the
following procedure does not apply to this case.

The global control of CCM* is the same as CCM.
So only the procedure of interpreting a reaction rule is
explained.2 In the following procedure, the initial state
of the WM is called S0, the state after applying the
reaction rule to the WM in state S j –1 is called Sj .
Thus, the sequence of reactions, a1, a2, …, aj , changes

1 However, this computation does not necessarily move to-
ward the steepest slope.
2 This procedure is still a simplified version. In more detail,
the state of the WM is updated to Si in step 2), and it is
(locally) backtracked to S0 when going to step 1) from step
3). In addition, this procedure must be modified if there are
two or more reaction rules.

fweight
cweights

SumVar

F

C

value

Sum

F

C

c

S = 1 – 2X

F+S*cF

X

fweight
cweights

Var

valuec

a1

1 – X
am am

...

a1

...
...

C1+S*a1

Cm+S*am

...

Cm

C1

X ∈ {0, 1}

a1, …, am, c, X,
F, C1, …, Cm :

Variables

Figure 6. The reaction rule for 0–1 IP problems

ICEC ’95, (C) 1995 by IEEE, 95.8.21 6:04 PM

5

state S0 to Sj (j ≥ 1). Oj is the sum of the LODs of
objects in state Sj .

The procedure is as follows:

1) Initialization: Compute the upper bound of the
number of reactions, M, using a random number.
Compute O0. Set i to 1.

2) Test and reaction: Compute Oi . If O0 < Oi (or O0
≤ Oi) holds, cause the sequence of reactions, a1,
a2, …, ai , and return from this procedure.

3) Preparation for next test: Increment i by 1. If i ≤
M, go to step 2) and test the next state. If i > M, go
to step 1) (restart this procedure from S0).

The distribution of the random numbers used in Step 1)
can be selected from a variety of distributions. The
distribution used in the experiments in the next section
is approximately the following exponential function:

P(M) = (1 – e–λ) e–λM (λ > 0)

For example, if λ = 0.7, the probability P(0) is 0.5.
This means that the probability that no composition
occurs (the original rule is used) is 0.5. It is not yet
known whether this distribution is really better. The
performance is not very sensitive to the shape of distri-
bution function in our experiments.

Known facts on the random numbers to define the
upper bound of the number of reactions (the upper
bound of the distribution) are as follows.

• Search efficiency: It is possible to use a fixed value
instead of random numbers for the upper bounds, M,
or to use an unbound number of reactions. However,
experiments have shown that these modified meth-
ods took more time at least in 0–1 IP problems. The
reason is probably that to search neighbor state in the
solution search is probabilistically more efficient,
i.e., can find better state, than to search distant states
when the current value of the objective function is
closer to the optimum value, because the search
space is not very steep.

• Possibility of getting an optimal solution: There
are cases in which the system can reach the optimum
solution by a reaction rule composed µ times, but it
cannot reach the optimum solution by a rule com-
posed less than µ times. In such a case, it cannot
reach the optimum solution if the number of reac-
tions is limited to less than µ. It is therefore better
not to set an upper bound on the random numbers if
the value of µ is not known. The upper bound can
be set to n in 0–1 IP problems because µ is known to
be n (the number of variables). However, a reason-
able upper bound cannot be known in general.

4. Experimental Results of 0–1 Integer
Programming Problems

The experimental results of 0–1 IP problems are shown
in the present section, comparing with those of the
original CCM and the annealed CCM. Some other
results are shown by Kanada [9]. The value of m is
fixed to 10, aij satisfies 0 ≤ aij < 105, and fifty prob-
lems are generated randomly for each value of n, 10,
20, 30 and 40. The value of cj is 2500 n for all j.

These restrictions are set so as to make experiment
easier, but they are not essential. The probability that
the optimum solution is found by one trial is called the
optimum probability (OP).

Part of the results is shown in Table 1.1 The OP,
the ratio of the approximate and exact values of the
solutions in average (CCM*-Average ratio) and in the
worse case (CCM*-Worst ratio) when λ = 0.7 are
shown. The CCM* has been compared with three
other methods on the same 0-1 IP problem. The first
method is the original CCM, and the second is the an-
nealed CCM. Their performances are also shown in
Table 1. This table shows that CCM* is much better
(the OP is 2.3 to 81 times higher) than the other two.

Figure 7 shows a more detailed result of solving
each problem by CCM*. The horizontal coordinate of
each point indicates the average CPU time of 100 runs
(two runs per problem), the vertical coordinate indi-
cates the OP, and the number below is the value of λ
(from 0.125 to 2). If the value of λ is changed from 2
to 1, the performance is much improved. However, the
OP is saturated when λ = 0.125. This performance
might not be enough if n is large (e.g., n = 40).

2

1
0.5 0.250.125

2

1

0.5

0.25 0.125

2
1

0.5
0.25 0.125

2

1 0.5

0.250.125

1 10 100

Execution time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
pt

im
um

 p
ro

ba
bi

lit
y

(O
P)

n=10
n=20
n=30
n=40

Figure 7. The optimality and CPU time of solutions
of 0–1 IP problems using CCM* (λ is varying)

A better performance is obtained by multiple trials.
The result of solving each problem eight to sixteen
times by CCM* is shown in Figure 8. The vertical
coordinate of the left end of each polygonal line, which
is labeled by “1,” indicates the OP. The probability
that the best solution in k trials is optimum is called the
k-trial OP. Two- to sixteen-trial OP and the CPU time
needed for calculating the solutions are also shown in
Figure 8. The eight-trial OP is more than 0.89.

CCM* has also been compared to a branch-and-
bound (B&B) method by Kanada [9]. The result
shows that CCM* found suboptimal solutions in less
time if the multiple-trial OP is allowed to be 0.9 to
0.99. However, the B&B method finds optimum solu-
tions, although solutions found by CCM* are not as-
sured to be optimum even when the trials are repeated
millions of times.

1 The performance was measured using a SOOC (Self-
Organization-Oriented Computing) language processor on a
Macintosh Quadra 700. The optimum solutions for the com-
parison were found using a branch-and-bound method.

ICEC ’95, (C) 1995 by IEEE, 95.8.21 6:04 PM

6

1 2 4 8

1

2
4 8

1

2

4

8

1

2

4

8
16

1 10 100 1000

Execution time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-
tr

ia
l o

pt
im

um
 p

ro
ba

bi
lit

y

n=10
n=20
n=30
n=40

Figure 8. The optimality and CPU time of solutions
of 0–1 IP problems using CCM* (λ = 0.7)

5. Related Work
Kauffman et al. [11] investigated a method of problem
solving or optimization of systems with many con-
flicting constraints by partitioning systems into small
“patches,” each of which behaves in a selfish way, i.e.,
without referring to other patches. The optimization is
performed by the emergent collective behavior of the
coevolving patches. This method performed better
than conventional global optimization methods when
there are many conflicting constraints.

The randomized dynamics of the Kauffman system,
which are called Glauber or modified Glauber dynam-
ics, are very close to CCM*. Patches correspond to the
atoms concerning to a reaction caused by a composed
rule in CCM*. However, they applied the method only
to the NK model [10], in which data are arrayed in a
lattice. The patches are fixed during the execution, and
the efficiency of computation is out of scope in their
paper. However, CCM is applied to more general data
structures, i.e., graphs. The “patches” are dynamically
determined during the execution in CCM.

Tunneling algorithms were proposed by Levy and
Montalvo [12], Shima [14] and others. The tunneling
algorithms are motivated by the concept of a tunnel
effect, which is similar to skipping over a valley of
MOD (Figure 2), and are used for optimizing continu-
ous systems. The direction of search can be deter-
mined dynamically and randomly. CCM* can be re-
garded as a symbolic version of a randomized tunnel-
ing algorithm [14].1

1 Thus, the relation between the randomized tunneling
method and CCM* are similar to the relation between EP
(evolutionary programming) and GA (genetic algorithms),
because EP is numerical and GA is mostly symbolic.

6. Conclusion
Methods of solving combi-
natorial problems using
extended CCM are ex-
plained in the present pa-
per. CCM* performs much
better than both the origi-
nal and annealed CCM, a

solution can be found using CCM* in less time than
the latter, and good suboptimal solutions can be found
in less time than B&B methods in randomly generated
0–1 IP problems. CCM* can easily be built-in to the
reaction rule compiler, then suboptimal solutions can
be found only writing a simple reaction rule and LOD.

In future work, the method of rule composition
should be extended to be able to be applied to systems
with two or more rules or different compositions.
Other future work is mentioned by Kanada [9].

References
1. Feige, U., Goldwasser, S., Lovász, L, Safra, S.,

and Szegedy, M.: Approximating Clique is Almost
NP-complete, 32th Symposium on Foundations of
Computer Science, 2–12, 1991.

2. Forrest, S., ed.: Emergent Computation, MIT
Press, 1991.

3. Hasida, K.: Dynamics of Symbol Systems, New
Generation Computing, 12, 285–310, 1994.

4. Kanada, Y.: Toward Self-organization by Com-
puters, 33rd Programming Symp., Information
Processing Society of Japan, 1992 (in Japanese).

5. Kanada, Y.: Optimization using Production Rules
and Local Evaluation Functions, 11th Mtg. of the
Tech. Group on S. E., SICE, 1993 (in Japanese).

6. Kanada, Y., and Hirokawa, M.: Stochastic Prob-
lem Solving by Local Computation based on Self-
organization Paradigm, 27th Hawaii Int’l Conf. on
System Sciences, 1994.

7. Kanada, Y.: Fuzzy Constraint Satisfaction Using
CCM — A Local Information Based Computation
Model, FUZZ-IEEE/IFES ’95, 2319–2326, 1995.

8. Kanada, Y.: Large-scale Constraint Satisfaction
Using Local-information-based Annealing and Its
Parallel Processing, SWoPP ’95, Tech. Rep. of
IEICE, 1995 (in Japanese).

9. Kanada, Y.: Combinatorial Problem Solving Us-
ing Randomized Dynamic Tunneling on A Pro-
duction System, 1995 IEEE Int’l Conferences on
Systems, Man and Cybernetics, 1995.

10. Kauffman, S. A.: The Origin of Order, Oxford
University Press, 1993.

11. Kauffman, S. A., Macready, W. G., and Dickin-
son, E.: Divide to Coordinate: Coevolutionary
Problem Solving, ftp://ftp.santafe.edu/pub/Users/-
wgm/patches.ps.Z.

12. Levy, A. V., and Montalvo, A.: The Tunneling
Algorithm for the Global Minimization of Func-
tions, SIAM J. Sci. Stat. Comp., 6: 1, 15–29, 1985.

13. Salkin, H. M., and Mathur, K.: Foundations of
Integer Programming, North-Holland, 1989.

14. Shima, T.: Global Optimization by Annealing
Type of Random Tunneling Algorithm, TR of
SICE, 29: 11, 1342–1351, 1993 (in Japanese).

15. Takefuji, Y.: Neural Network Parallel Processing,
Kluwer Academic Publishers, 1992.

Table 1. The optimality of solutions of the 0–1 IP problems using CCM*

CCM* (λ = 0.7) Original CCM Annealed CCM

n Optimum
probability

Average
ratio

Worst
ratio

Optimum
probability

Average
ratio

Worst
ratio

Optimum
probability

Average
ratio

Worst
ratio

10 0.97 0.998 0.83 0.012 0.62 0.14 0.42 0.95 0.77

20 0.71 0.995 0.91 0.000 0.63 0.19 0.006 0.80 0.37

