Dynamically Extensible
Policy Server and Agent

Yasusi Kanada
Hitachi Ltd., Systems Development Laboratory

Background

B The function of network node will be dynamically
extensible.
& Software can be added/replaced by, e.g.,
I Active packets
I Java code injection
€ Hardware can be added/replaced by, e.g.,
I Board addition/replacement
Both software and hardware functions can be
added/replaced on-the-fly (while the node is running).

B Thus, policies should be dynamically extensible.
@ New classes of policies should be able to be added
dynamically

1 if the network is controlled/managed by policies, and
1 if the network function may be added dynamically.

Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

Problem

B Conventional policy-based systems do not allow
dynamic extension.

¢ E.g., in COPS-PR, policies are stored in statically-
specified PIBs.
B New classes of policies require new PIB specification.
1 If starndard-based, vendors must wait for PIB standardization.
B No dynamic extension, even if non-standard PIB is used.

Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

Solution

B The policy-extension-by-policy (PXP) method has been
developed.

€ A new policy class is defined by predefined PD/PE
policies in the PXP method.
1 A PD (policy definition) policy contains device-independent
definitions of user-defined policy classes, and

1 A PE (policy embedding) policy contains device-dependent
methods for translation of user-defined policies into device
configurations.

I PD/PE policies are meta policies.

Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd. 4

An Architecture for the PXP Method

B Software components

User/Application interface User/Application

interface
€ Policy manager X
(Policy server, PDP) policies
@ Policy database ¥

@ Policy agents

Policy policies| Policy
DB manager

/)olicies\

B Policy agents may be
embedded in network

nodes.

Policy Policy
agent agent
configu- configu-
rations rations

Network | " | Network Network | " | Network

node node node node
Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd. 5

Policy Deployment Process of the PXP Method

PD policy

User/Application
N interface

— PE policies
Administrator

deploy
Po y » Then, policy manager can handle
PB|IIBCy manager new classes of user-defined policies.

Policy-- Then, policy agent can translate
agent new classes of user-defined

[N L N

Network | " | Network Network | " | Network
node node node node
Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd. 6

Basic Policy Information-model

H A policy is a sequence of policy rules: P ={r1, r2, ..., rn}.
B A policy rule consists of
@ A list of conditions: c¢1, ¢2, ..., cm
@ A list of actions: a1, a2, ..., al
B A condition / an action consists of a variable and a value:
variable = value.
B A policy (instance) belongs to a policy class.
Class examples: Diffserv-edge, Access-control.
All the rules in a policy must have the same type of
functionality.
B Example (a Diffserv-edge policy rule)

@ if (source_address = 192.168.1.1, protocol = 'tcp')
{ DSCP = 46; }

Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd. 7

Prototype Development

3 DEPS Dyn o]
H E TH Y Q) ANTH
. Three pollcy classes Were 7_@@,‘“9 FEOW 7@ Communicator o 1
. DEPS Preliminary Version (2001-9-7)
p re d efl n e d . Poli T:‘s ‘ Psl::wlnivsiiv;s cessControl Policy targets (roles)

Deploy |/ Undeploy
10,

@ PolicyToTelnet (an amalgame
of PD & PE policies)

Most important
¢ PolicyVariableDefinition e || 1
(2 PD policy A
PolicyValueTranslation (an ..
amalgame of PD & PE policies) . s 5
B A PolicyToTelnet policy rule defines
a user-defined policy class, and

the method of translating a policy of this class into CLI
commands.

Update frame |

Logging in to Osaka-GR. . Getting interface information of Osaka-GR. .. gr2000_osala/

Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd. 8

PE Policy

B Two essential elements of PE policy rules are
€ Command template
@ Template fillers

B A command is generated from the pattern by filling the
unfinished portions by using template fillers.

Bl Example

¢ Command template: access-list %s permit %s %s %s.

®Fillers: n + 1, similar to printfin C

protocol || 'ip',
source address || 'any',
destination address || 'any'

€ Command generation
I Variable values: N = 2, protocol = 'tcp',
source address = '192.168.1.1', and
destination adress = ''

I access-1list 3 permit tcp 192.168.1.1 any

Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd. 9

PolicyToTelnet Policy and Policy Deployment

Condition part:
if (name = policy class name) |
Action part 1/3: Policy variable declarations
condition variables =
{variable name options, ...},
action variables =
{variable_name options, ...},

Policy initialization

Prologue

_______________________________________ / . o, . . .
ipolicy initialization = Rule initialization

Commands

Rule initialization

e e e

Commands

policy pre undeploy commands =

Generation order

Rule initialization

[[template, filler, ﬁ_ller, 0,]
policy post undeploy commands = \ Commands
[[template, filler, filler, ...1, ...]
Action part 3/3: Policy rule translators __________/ 'V
irule initialization =] Epilogue

__

rule deploy commands =
[[template, filler, filler, ...1, ...1y

rule undeploy commands =
[[template, filler, filler, ...1, ...1 }

coooog

Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd. 10

PolicyToTelnet Policy and Policy Undeployment

Condition part:
if (name = policy class name)
Action part 1/3: Policy variable declarations
condition variables =
{variable name options, ...}, Policy initialization
action variables =
{variable name options, ...}, -

Action part 2/3: Policy prologue/epilogue translatefs

ipolicy initialization = 1

. {work variable_ =_ initial_value, _ ...}

policy pre deploy commands =
[[template, filler, filler, ...],

policy post deploy commands =

Prologue

/ Rule initialization

Commands

Rule initialization

Commands

__

Generation order

Rule initialization

policy post undeploy commands Commands

____Lltemplate, filler, filler, .1, ...
Action part 3/3: Policy rule translators __ /

1 B] v v "
rrule initialization =

i {work variable = policy bytecode progra

__

rule deploy commands =

[[template, filler, filler, ...1,

LMJ,[KEBME@LILIEQ"&W

Epilogue

Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd. 11

Conclusion

B By using the PXP method,

Policies with new functionality can be added/replaced
by using preexisting interfaces such as CLI, MIBs, PIBs,
APIs, hardware tables.

@ Policy classes can be defined by users or applications
much easier.

Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd. 12

