# Network-resource Isolation for Virtualization Nodes

Yasusi Kanada, Hitachi, Ltd. Kei Shiraishi, Hitachi, Ltd. Akihiro Nakao, University of Tokyo

# **Outline: Why NRI and how?**

We developed a network-virtualization architecture and platform.

 In this platform, multiple slices (i.e., virtual networks) can be created on one physical network called a virtualization platform).

#### Network-resource isolation (NRI) between slices is necessary for network virtualization.



 Because resource interference (concerning communication bandwidth, delay, etc.) between slices must be avoided.

#### We propose three methods of NRI based on shaping and policing (QoS mechanisms).

- Per-slice shaping (PSS)
- Per-link policing (PLP)
- Combined method (PSS with PLP)

### VNode

VNode (virtualization nodes) is a component of the network virtualization platform.

- VNode is a physical node.
- VNode forwards packets on the platform, which contain a virtualized packet on a slice (i.e., overlay approach).
- VNodes are connected by tunnels using a protocol such as GRE.



### **Components of VNode**

#### Programmer

 is a programmable component that processes packets on the slices.

#### Redirector

- forwards (redirects) packets from another VNode to a programmer and forwards packets from a programmer to another VNode.
- is a component that can forward or route packets on the platform.

### VNode Manager

 is a software component that manages the VNode.



### Internal Structure of Redirector in VNode

- The redirector contains a high-end switch (or router) (and a packet encoder/decoder, such as a GRE encoder/ decoder).
- This switch has policers and shapers that can be used for implementing NRI.



### **Specification of NRI**

To isolate a slice from other slices, bandwidth (and burst size) is specified in virtual links in the slice definition.

### Example of virtual link specification:

```
port0() Bandwidth = 30 Mbps, Burst size = 10 kB) port1
```

<vports><vport name="port0" /><vport name="port1" /></vports><resources><resource key="bandwidth" value="30M" />

```
<resource key="burstSize" value="10k" />
```

```
</resources>
```

```
</linkSliver>
```

### **Traffic control functions used for NRI**

### Shaping

- queues packets, and limits and schedules the egress traffic.
- delays the packet, and drops it when the queue is filled.
- is more expensive and less scalable than policing (i.e., requires more memory and scheduling overhead).

## Policing

- measures network traffic without accumulating packets and drops packets when the bandwidth (or the burst size) exceeds a limit.
- can be used for guaranteeing bandwidth of virtual links that shares a queue (i.e., divides bandwidth reserved for a queue to slices).
- is less expensive and more scalable than shaping.



### **Three Methods for NRI**

- Per-slice shaping (PSS)
- Per-link policing (PLP)
- Combined method (PSS with PLP)

### Three Methods for NRI (cont'd)

### PSS (Per-slice shaping)

- isolates slices strictly by shaping traffic per-slice instead of per-link (i.e., per virtual-link).
  - Although per-*link* shaping is required for guaranteeing QoS.
- is sufficient for NRI but does not guarantee per-link bandwidth.
- does not use policing (does not intentionally drop packets).
- is more scalable than per-link shaping (because it uses 80–90% less queues).



### Three Methods for NRI (cont'd)

### PLP (Per-link policing)

 isolates slices (and virtual links) statistically (in a less-strict way) by policing traffic per-link; that is, guarantees per-link bandwidth by measuring and dropping

packets link-by-link.

- uses shaping per slice-class (that is, slices share a queue).
- is more scalable than per-slice shaping (is applicable to hundreds of slices).
- may be influenced more by other slices than PSS (may be worse in delay and jitter).



### Three Methods for NRI (cont'd)

#### Combined method (PSS with PLP)

- isolates slices by shaping traffic per slice and policing traffic per-link.
- is as strict as PSS in isolation from other slices.
- statistically guarantees per-link bandwidth (QoS).

#### **Combined method**



### **Implementation and Evaluation**

► We implemented the three methods for NRI.

#### Evaluation of slow-path and fast-path virtual nodes

- Method: Three slices are used: one for foreground traffic to be measured and two for background cross traffic.
- Result: Slow-path (Linux VM) virtual nodes

| Isolation type    | Delay (mS) |         | Jitter (mS) |         | Drop ratio |         |
|-------------------|------------|---------|-------------|---------|------------|---------|
|                   | Average    | Std dev | Average     | Std dev | Average    | Std dev |
| PLP               | 1.60       | 0.12    | 0.10        | 0.01    | 0          | 0       |
| PSS               | 1.30       | 0.08    | 0.11        | 0.02    | 0          | 0       |
| Combined          | 1.33       | 0.10    | 0.10        | 0.01    | 0          | 0       |
| No isolation      | 12.08      | 4.28    | 0.12        | 0.01    | 0.41       | 0.05    |
| (Congestion-less) | 1.31       | 0.15    | 0.12        | 0.02    | 0          | 0       |

Conditions: Link sliver bandwidth = 100 Mbps, traffic = 90 Mbps. Cross traffic fills the link.

- Result: Fast-path virtual node (using a network processor)
  - Slices have been isolated when the foreground traffic is 4.0 Gbps or less. (The physical link bandwidth is 10 Gbps.)

### Conclusion

Three methods for NRI for virtualization networks are proposed in this paper.

- PSS enables NRI with 80–90% less queues compared to the perlink shaping.
- PLP enables less strict isolation between tens or hundreds of slices using only one queue.
- A combination of PSS and PLP.
- Evaluations of these methods show that PSS performs slightly better in terms of delay and packet-drop ratio.
- ► Applications of PSS and PLP:
  - PSS and the combined method are effective for delay-sensitive services.
  - PLP may be sufficiently used for the other types of services.

# Suppl: Two Types of Slice Components in VNP

#### Node Sliver (or virtual node)

- represents computational resources that exist in a VNode (in a programmer).
- is used for node control or protocol processing with an arbitrary packet format.

♦ is generated by slicing physical computational resources.

### Link Sliver (or virtual link)

represents resources of a virtual link that connects two node slivers.

is generated by slicing physical network resources such as bandwidth.



### **Suppl: Components of Redirector**



### **Suppl: Slice definition**

► A (human) **slice developer** writes a slice definition in XML.

The slice definition is sent to DC, distributed to each VNode Manager, and sent to the programmer and the redirector.

