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Introduction

» Two difficult problems concerning BP (back propagation)

m Decision (or scheduling) of learning rate

* Constant or prescheduled learning rates — not adaptive
* Adaptive scheduling methods — have sensitive hyper parameters difficult
to be tuned.
m To control locality of search properly
* The gradient descent algorithm, including SGD, does not search the
space globally.
* To find a better solution efficiently, multiple trials are required.
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Introduction (cont’d)

» Proposal: LOG-BP (the learning-rate optimizing genetic
back-propagation) learning method

m A method of new combination of BP and GA (genetic
algorithm)

m Multiple neural networks run in paraliel.
m Per-epoch genetic operations are used.
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Outline of LOG-BP

» Multiple “individuals” (neural networks) learn and search
for a best network in parallel in LOG-BP.

» Each individual contains a chromosome c.
mc=(nwll,wi2, ..., wini, b1, w21, w22, ..., w2n2, b2;
... WN1, wN2, ..., wNnN, bN)
n: learning rate,
wij (1 <j < ni): weights of j-th layer of the network,
bi: bias of i-th layer.

» A mutation-only GA is applied to these chromosomes.
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Learning algorithm of LOG-BP

Initialization Randomize the weights and learning rates
cl c2 cn
W10 | n1 W20 | n2 -« |WnO|] nn
Epoch 1 i'
1.1 Learning by back-propagation (using stochastic gradient-descent with mini-batch)
c1 c2 cn
W11 | n1 W21 | n2 Wn1| nn
‘1, Weights are muted.
1.2 Evaluation (calculating validation losses) (least-square errors)
c1 c2 cn
el1 ... best e21 ... worst en
1.3 Selection and mutation (no crossover) g = f(pl’Obabili_tIy of ]9-5)
Duplicate and mute c1. Kill c2. =l (p(?of?t))' ity of 0.5)
c1 ctl’ ch
W11 | n1 W11 | nt’ ==« |Wn1] nn
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Application to Pedestrian Recognition

» Caltech Pedestrian Dataset

m A famous pedestrian detection benchmark that contains videos

with more than 190,000 “small” pedestria

ns.

m Sets of training data and test data, both of which are 24x48- and

32x64-pixel images were generated.
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m Convolutional neural networks (CNNs) )

with two/three convolution layers

» Environment for computation

m Deep learning environment: Theano
m GPU: NVIDIA GeForce GTX TITAN X
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Pedestrian: Change of Learning Rate

Learning rate

» Example: CNN2

(a) A trial with 12 individuals
(filters = [16, 26])

(b) A trial with 12 individuals
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Learning rate may become mostly
stationary at some epoch.
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Pedestrian: Change of Learning Rate (cont’d)

» Example: CNN3

(a) A trial with 12 individuals (b) A trial with 24 individuals
(mutation rate = 8.3% (1/12)) (mutation rate = 4.2% (1/24))
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IJCNN 2016 2016-7-26 Yasusi Kanada, Hitachi, CTI



Application to MNIST (Character Recognition)

» MNIST benchmark

m A set of hand-written digit images (28x%28) containing a training set
with 60,000 samples and a test set with 10,000 samples.

» Adaptive learning rate is not required!

m The learning rate during the whole learning process of LOG-BP
was around 0.1.

» Summary: LOG-BP may still have benefits in terms of
parallel-search performance.
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MNIST: Performance (CNN3, Examples)
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MNIST: Performance (CNN3, Statistics)

» Convergence time and final error rate

Mutation rate Average convergence Final error rate
time (std. dev., s) (std. dev., %)

4% 2.6x103 (0.5%103) 0.82 (0.01)

2% 4.9%103 (2.6%10%) 0.84 (0.07)

0% 5.6x103 (0.9%109) 0.86 (0.03)
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Conclusion

» LOG-BP that combines BP and a GA by a new manner is
proposed.

» LOG-BP solves two problems concerning BP.
m Scheduling of learning rate

m Controlling locality of search

» Two benchmarks show high performance of LOG-BP.

m The MNIST benchmarking suggests advantages of LOG-BP over
conventional SGD algorithms.

m LOG-BP will make machine learning less dependent to properties
of various applications.
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