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Abstract

The conventional processing techniques for pipelined
vector processors such as Cray-XMP, or SSIMD parallel
processors, such as CM-2 (connection machine), are
generally applied only to independent multiple data pro-
cessing. This paper describes a vector processing method
of multiple processings including parallel rewriting of
dynamic data structures with shared elements, and of mul-
tiple processings that may rewrite the same data element
two or more times. This method is called the filtering-
overwritten-label method (FOL). FOL enables vector
processing of entering multiple data into a hash table,
address calculation sorting, and many other algorithms
that handle lists, trees, graphs and other types of symbolic
data structures. FOL is applied to several symbolic
processing algorithms; consequently, the performance is
improved by a factor of ten on the Hitachi S-810.

1. Introduction

An attached vector processor, called the Hitachi M-
680H IDP (Integrated Database Processor) [Koj 87], is
designed for database processing and has been applied
to several symbolic processing applications [Tor 88].
However, most other vector processors, such as the
Cray-XMP or the Hitachi S-820, are mostly used for
numerical processing, and rarely used for symbolic
processing. One of the reasons that the extension of
applications from numerical to non-numerical areas has
been prevented is that no vectorization method that is
widely applicable to processing dynamic data structures
connected by pointers, such as linear lists, trees and
graphs has yet been established.

The symbolic vector-processing methods devel oped
by Kanada, et. al. [Kan 88, Kan 89a, Kan 89b] enable
vector processing of multiple dynamic data structures by
vectorization, a program transformation. When these
methods are applied, the data structures are accessed
through index vectors, which contain pointers or indices
to the data to be processed. These methods are called
simple index-vector-based vector-processing methods
(SIVP) in this paper. The list-vector-processing facility
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and conditional control facilities [Kam 83], such as
masked operations, of vector processors are used in
SIVP.

However, the conventional vector-processing
methods including SIVP are basically applied only to
independent multiple data processings. That means
these methods cannot vectorize multiple processings
including rewriting of data with shared elements, such
as graphs, and they cannot vectorize multiple
processings that may rewrite the same data element two
or more times, such as entering multiple data into a
hash table, as will be explained in Section2. The
filtering-overwritten-label method (FOL) explained in
this paper solves this problem.

The above problem is explained further in Section 2.
The principle and algorithms of FOL are shown in
Section 3.  Several applications and performance
evaluations of FOL are shown in Section 4. The related
works are mentioned briefly in Section 5.

2. Problemsin Vector Processing of Shared
Data

In the symbolic vector-processing methods shown in
Kanada [Kan 88, Kan 89a, Kan 89b], data are read and
written through index vectors. Figure 1 illustrates two
types of index vectors: a vector of pointers to the data,
and a vector of subscripts or displacements of the data.
Using index vectors, parts of the symbolic data are
gathered into a vector register or scattered to the main
storage by the so-called list-vector instructions or
indirect vector load/store instructions.
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The classes of vectorizable and unvectorizable
processings are explained using Figure 2. SIVP is
basically applicable only for independent multiple data
processings. That means SIVP can be applied to an
index vector that contains pointers or indices to
independent data (Figure 2a). However, SIVP can also
be applied to read-only processings of multiple data
including shared data. The index vector may have
pointers to the same data (Figure 2b), as long as it does
not update the data. But SIVP cannot be applied for
rewriting multiple data with sharing (Figure 2b),
because if applied, processings that must be performed
sequentially would be performed in parallel and would
cause incorrect results (explained later in this section).
Therefore, SIVP cannot be applied for rewriting partially
shared data structures (illustrated in Figure 3), because
read-only vector-processable index vectors (Figure 2b)
may be generated while processing such data structures.
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Two examples that cannot be processed by the
previous SIVP methods are shown below (in Figure 4).
The first example shows multiple data being entered
into a hash table. This processing is called multiple
hashing in this paper. The entered data are chained
from the hash table entries. Figure 4a shows sequential
processing whereby two keys are being entered. Keys
353 and 911 are entered in this order. Because the
hashed values of these keys are both five, they are
colliding. So they are chained from the same hash table
entry. Figure 4b shows the problem of multiple hashing
by forced vector processing. The keys are initialy

stored in a vector, and the hashed values are calculated
by vector operations and stored into another vector
which is used as an index vector in the following
process. |If no collisions occur, the key writing is pro-
cessed properly. However, collision occurrence makes
the correct processing impossible. The pointer to the
second key overwrites that to the first key in this figure.
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(b) “Forced” vector processing

Figure4. The problem of multiple hashing
by vector processing
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The second example is tree rewriting which
transforms an input tree to an equivalent final form by
applying a rewriting rule. Figure5 illustrates two ways
of rewriting an operation tree; here, the associative law
is used as the rewriting rule. The associative law is
expressedas X * (Y * Z) - (X *Y)* Z. The arrow
indicates the direction of the rewriting. The input tree is
a* (b*(c*d) inFigure5 The rewriting is applied
to nodes n3 and n5 in Figure 5a, and to nodes nl1 and n3
in Figure5b. Node n3 is “shared” between these two
rewritings. A forced parallel rewriting by vector



processing causes generation of a tree which is not
equivalent to the original, or the rewriting process will
be aborted because of a nonexistent (phantom) node
access. In this example, multiple (two) nodes are
rewritten in a unit process, i.e., one rewriting.

3. A Solution: the Overwritten-Label Filtering
Method

A method of rewriting multiple symbolic data with shar-
ing, called the filtering-overwritten-label method
(FOL), has been developed. The principle and
algorithms of FOL are explained in this section.

3.1 Theprincipleof FOL

The problem explained in Section 2 is solved by the
decomposition of a data set into parallel-processable
subsets, illustrated in Figure 6. In this principal
method, the element set (S) of the original index vector
is split into parallel-processable sets (S1, S2, and S3)
and restored into parallel-processable index vectors (V1,
V2, and V3). These index vectors are processed one-by-
one by vector operations. Pointers to one data, a for
example, are scattered into different index vectors. This
principal method processes the unshared part of the
multiple data in paralel and the shared part sequen-
tialy.
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Figure 6. Decomposition of data with sharing into
parallel-processable index vectors

To implement the above principal method, a method
of decomposing data sets into parallel-processable sets
must be developed. The data which cannot be
processed in paralel are multiple pointers or indices
that point to one data, and they can be detected by
comparing all of the pairs of pointers or indices.
However, this process needs O(N?) comparisons, so it

Paralldl-processable set  Parallel-processable

will decrease the performance. FOL" is a method of de-
composing a data set in O(N) time in normal cases by
vector processing.

Before explaining the algorithms of FOL in the
following subsections, a method of multiple hashing
using FOL is explained informally (See Figure 7).
Only the keys are entered into the hash table in this
example for the sake of simplicity. The keys to be
entered are initialy stored in a vector. Each hash table
entry has a work area for storing labels.

The detection of collisions, entitled FOL processes 1
and 2 in Figure 7, is performed entirely by vector opera-
tions in the following manner. In Step 1, the subscripts
of the key vector are written into the work area indexed
by the hashed values. These subscripts are called labels
in FOL. In Step 2, the labels are read immediately
after writing, using the same indices, i.e., the hashed
values. These label writing and reading processes are
performed using the list-vector instructions. The
elements of the read vector are compared with the origi-
nal labels. They are equal if there are no collisions.
However, they are not equal when there are collisions,
because collisions cause overwriting of labels in the
work areas. The results of the comparisons are stored
into a mask vector, a Boolean vector. The key vector
elements, whose corresponding mask vector elements
are true, are the set of paralel-processable data. In the
example in Figure 7, the second to fourth elements of
the key vector form the first parallel-processable set of
keys, because the second to fourth elements of the mask
vector are true. These keys are entered into the hash
table in paralel in Step 3. In Step 4, the above
process is repeated until all of the keys are classified
into a parallel-processable set, and all of them are
entered into the hash table.

3.2 FOL for rewriting single data per unit
process

FOL is a generalization of the multiple hashing method
explained in the previous subsection. FOL can be
applied to a wide range of processings that rewrite
multiple data with possible sharing. The algorithm of
FOL for rewriting a single data per unit process to be
vectorized is shown in this subsection. An extension of
FOL for rewriting multiple data per unit process, such as
rewriting the operation tree shown in Section 2, is
shown in the next subsection.

An FOL agorithm which decomposes a set of data
into parallel-processable sets is shown below. The
whole process of this algorithm can be performed by
vector operations on a vector processor such as the
Hitachi S-820.

* FOL is a generalization of the “overwrite-and-check” method in
Kanada [Kan 904].
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Figure 7. A method of multiple hashing by FOL

m Algorithm: The Overwritten-Label Filtering
Method 1 (FOL1)

O Input

This algorithm inputs an index vector V. The
elements of V are pointers or indices to storage areas
containing data d,, d,, ..., dy, respectively, where
there may be duplicated data (i.e., the same data
may appear two or more times in the sequence d4, d,
...,dy). The storage area pointed to by v, an element
of V, is noted by v, and the data stored in v is
noted by v d.

O Output
This algorithm outputs the sets of parallel-processable
data S, S, ..., Sy (the value of M is obtained as an

M
execution result of this algorithm), where U § = {dx,
i=1
dy, ...,d\} ad Sy, S,, ..., Sy are digoint sets, i.e., S
n § =0 for arbitrary i and j (disjoint decomposition
condition).
O Process conditions

* Processing P;, which corresponds to the main process
in Figure 7, is applied to data d; (i = 1, 2, ..., N) by

O Procedure

(0) Preprocessing: Set 1 to variable j.
Assign a unique label to each element of V. The
labels may be assigned before the execution time if
possible.™”

(1) Writing labels: Write the labels of vy, vy, ..., V,
into the work areas v;— W, Vo> W, ..., V> W,
respectively; where n is the number of elements of V.
The execution order is arbitrary, and the labels may
be processed in parallel.

(2) Detection of overwriting: Read the labels from the
work areas vi - W, Vo> W, ..., Vu—» W, and compare
them with the labels of vy, v, ..., v,, respectively.
Step (1) must be completed before reading the labels.
(A synchronization may be necessary.) If the value
read from v;- w is not equal to the label of v;, it
means that v; is overwritten. Then the set of all the
data pointed to by the elements of V except the data
whose equality check has failed is the parallel-

* This condition holds for multiple hashing. Because if no collision
occurs, the order does not matter. And if a collision occurs, the order
of the entered data in the hash table is dependent on which colliding
data is stored, but again it does not matter. Processings not satisfying
this condition are considered later in a footnote.

** The most easily computable label for element v in vector Vis the
index or element number of vin V, or the displacement of v (the
number of bytes) from the top address of V.



processable set. This set is named §. More exactly,
set{u;~d, u~d, ..., Uy -~ d} isassigned to §, where
ug(k=1, 2, ..., m) are al the elements of V, which
satisfies the relation u,— w = I; where |, is the label
for uy.

(3) Updating control variables: Add 1toj. Delete the
pointers or indices pointing to data in §, from V. The
number of elements of V is reduced.

(4) Repetition: Repeat the above Steps (1) to (3) until
V becomes empty. When terminated, set j — 1 to
variable M. =

In the example of multiple hashing shown in
Subsection 3.1, the main processing (entering the keys)
is amalgamated to the steps of FOL because of
efficiency, but the main processing is not included in
FOL1 (the above algorithm), to make the algorithm
multi-purpose.

The following condition must hold for the sake of the
correctness of FOL1.

m The exclusive label storing condition (ELS
condition)

One of the multiple labels written into one work area
is stored correctly. That means, if two labels la and Ib
are written into the same area in parallel, the stored
value is not an amalgam of la and Ib. Which one of
these labels is stored is arbitrary. m

ELS condition is guaranteed when the label length is
equal to or less than the machine word length in normal
pipelined vector processors. This condition holds here-
after.”

The lemmas and theorems on FOL1 are shown
below.

m Theorem 1: Termination property
Algorithm FOL1 terminates.

O Proof: Any label read from a work area is equal to
one of the original labels written to the work area by

* There is a type of algorithms, which FOL should be applied to, in
which the order of multiple processings for one data must be
preserved. It is possible to modify FOL1 so as to eliminate the above
process condition and to construct vectorized algorithms of such a
type. That is, if processings P; are applied to data d;j (= vj-d) and
processing Pj are applied to data dj (= Vj - d) where d;j and dj are
equivalent (i.e., in the same storage area), and the execution of P;
precedes that of P; in the sequential execution, then ELS condition
can be replaced by a stronger condition so that the relation k > | holds
for the output sets S¢ and §, where ¢ 0 §¢and d; U S.

For the vector processor S-820, higher-perfor mance list-vector store
instruction (M ST (Vector Indirect STore) instruction), which satisfies
ELS condition, can be used for writing labels in FOL1. However,
VSTX (Vector STore indeXed) instruction, which is slower but guaran-
tees the order of storing the vector elements (a stronger condition than
ELS condition), can be used instead of M ST to satisfy the above
relation, k> |, and to eliminate the above condition.

ELS condition. Thus, the read label is equal to at least
one of the original labels in Step (2), and § is not an
empty set for arbitrary j. This means that the number of
elements of the index vector V is reduced every time in
Step (3). Therefore, V always becomes empty in finite
iterations, and FOL1 terminates. m

The correctness of FOL1 will be proved using two
lemmas.

m Lemma 1: Disjoint decomposition

The disjoint decomposition condition shown in the
output specification of FOL1 holds. That means, the
union of the output sets, S, S,, ..., Sy, is equal to the
input data set, and § n § =0 for arbitrary i and j,
when FOL1 terminates.

O Proof: If the following conditions hold, the disjoint
decomposition condition holds:

(@) each element of the output set § (j =1, 2, ..., M)
is one of the input data,

(b) each input data is an element of an output set, and
(c) the output sets are disjoint.

First, we show condition (a). The index vector V
consists of all the pointers, each of which points to each
input data on the beginning of the execution. An
element, e, of an arbitrary output set S is one of the
input data, because it is selected from all of the data
that the elements of V point to in Step (2).

Next, we will show conditions (b) and (c). V
consists of all of and only the pointers or indices to the
input data of the beginning of the execution. V becomes
an empty set at the termination. The elements are
deleted from V in Step (3) immediately after they are
added to one of the output sets § (j =1, 2, ..., M) in
Step (2), and al the elements are deleted from V before
the execution terminates. That means that all of the
data pointed to from V are added to one of the output
sets. In addition, the pointer or index to an element of
S; is deleted immediately after the content of S is
computed, so this pointer or index never belongs to S,
(m>j). Thus, the output sets are disjoint. m

The cardinalities (the numbers of elements) of S;, S,,
..., Sy are noted by 5,00 (5,00 ..., (0540 respectively.
Then, the following lemma and theorem hold.

mLemma?2

If d and d; (k #I) are arbitrary elements of an output
set S, then dy and d, are in different areas (d, and d, are
different data).

O Proof: The lemmais proved by contradiction. If d,
and d, are in the same area, the pointers or indices to
them, which are the elements of V, have the same
value. The labels assigned to these elements are stored



into the same work area. One of these labels is
overwritten by the other, so dy and d; are included in

different output setsin Step (2). Thisis a contradiction,
so the lemmais concluded. m

m Theorem 2: Correctness
The output conditions hold when FOL1 terminates.

O Proof: This theorem is proved by Lemmas 1 and 2.

(Lemma 2 guarantees that the output sets are parallel-
processable.) =

One more theorem is given but the proof is omitted.

m Theorem 3

The following relation always holds: [05,0=> [15,(0>
.. 2[0Sy0 and M = 1 (the number of iterations in
FOL1 is equal to one) when the input data does not
have duplications. =

The allocation of the work area used in FOL1 is
explained. Normally, the work area can share storage
with the area used by the main processing, because it
does not matter whether the value held in the area
pointed to by the elements of V is destroyed before
FOL1 is applied by writing labels, and because there is
no possibility that the wrong value, which is not a
correct label, is read in the process of overwriting
detection. It does not matter whether the value is
destroyed because the main processing will rewrite the
storage area where the labels are written by FOL1.
Conversely, a sufficient condition that the main
processing always rewrites the work area, where the
labels are written, or a weaker condition must hold.
There is no possibility that the wrong value is read,
because there is no possibility that, while reading labels
in Step (2), the labels are read from an area where no
labels were written, because ELS condition holds and
the labels are read through the same pointers or indices
used when writing the labels.

Because the size of each work area is log,N bits or
more, the shared area must be extended when the main
processing requires less area. The size must be log,N
bits or more because the work area must have enough
capacity to hold one of N different labels.

The performance of FOL1 is examined next. The
sequentially processed part of the main processing is not
accelerated by FOL. On the contrary, the execution of
this part becomes slower because of the overhead of the
detection of parallel-processable data. Consequently,
the sequential execution is better than FOL in a
processing where most of the data cannot be processed
in parallel. However, if the sharing rarely occurs and
most of the data can be processed in parallel, FOL is
promising.

The following theorem guarantees that the execution

time of FOL1 is O(N) when the number of sharing is
small.

m Theorem 4: O(N) execution time

M
If condition [0OS;0» ; 0S;0 holds, then the
1=

execution time of FOL1 is O(N).

O Proof: If the above condition holds, the execution
time of Step (4), which depends on O0SO(i = 2, 3, ...,
M), can be ignored compared with the sum of the
execution time of Steps (1) and (2) which depend on
0S;0. Then the execution time of FOL1 is O(N),
because the execution time of both Steps (1) and (2) is
O(N). m

In particular, the execution time of FOL1 is O(N) when
there are no duplications in the input data, by
Theorems 3 and 4.

A lemma and two theorems are given. Theorem 5
guarantees the best performance in a sense, when

M
condition 5,0» % 50 does not hold.
I =

m Lemma 3

If there are M’ duplications in the input data, all of
which are the same, including the original data (i.e.,
there is a storage area which is shared by M’ input
data), and there are no more than M’ duplications, the
number of output sets, M, isequal to M’.

O Proof: If there are M’ duplications, V has M’ ele-
ments, which point to the same storage area containing
the duplicated data, at the beginning of FOL1. As
explained in the proof of Theorem 1, there always exists
a label that coincides with the original in Step (2). In
addition, each input data has a unique label and only
one of the labels is read repeatedly M’ times, so, in the
labels of the M’ elements of V, there is exactly one
label that coincides. Therefore, exactly one of these
elements is deleted from V every time Step (3) is
executed. The number of iterations in FOL1 is equal to
M. Thus, M’ isequal to M. =

m Theorem 5: Minimum decomposition
If T, 0 T,0 ...0O Ty:': is an arbitrary

M

decomposition of the input data, i.e, U T; ={dy, dy ...,
i=1

dy}, where the elements of T; is parallel-processable for

arbitrary i, and the number of output sets of FOL1 is M,

then M’ =M. That means that the number of output

sets of FOL1 is minimum.

O Proof: The duplicated data does not belong to the
same output set because, otherwise, the output set is not

parallel-processable. Thus, if there are M’ duplications
in the input data, the number of parallel-processable



sets is no less than M’ for arbitrary decomposition. The
number of output sets of FOL1 is also M’ by Lemma 3.

Thus, the number of output sets of FOL1 is minimum.
|

m Theorem 6: Worst execution time

The execution time of FOL1 is O(N?) when the
following condition holds: [5,0=[5,00= ... = [§,0= 1.
O Proof: The execution time of the single iteration in
FOL1 is mainly dependent on that of Steps (1) and (2),
and they are in proportion to the number of the elements
of V. The number of elements of V decreases one by
one under the above condition. So the execution time
of the j-th iteration is (N —j + 1) t + ¢, if the sum of
the execution time of Steps(1) and (2) istandcisa
constant, and the total execution time is approximately

N
21 (N—j+1)t+C, which meansitis O(N?). m
J:

The application area of FOL1 is considered next.
FOL1 is a vectorization/parallelization method which
can be used in a wide range of applications. Multiple
hashing is a typical multiple data processing where a
small number of sharings exist, but the same condition
holds in many applications, for example, address
calculation sorting and parallel rewriting of lists, trees
(DAGs) or graphs with sharing, as illustrated in
Figure 3.

Finally, a method of improving the execution time of
FOL1 by simplifying its process is examined. The
following simplified method can be applied when there
is no duplication in the values to be written into the
area pointed to by the elements of the index vector V.
In this case, these values can be used for labels, and the
label writing and the main processing (i.e., writing the
values) can be performed at the same time. For
multiple hashing, the above condition holds when the
keys are unique and used as labels.

3.3 FOL for rewriting multiple data per unit
process

FOL1 can be applied when only one data is rewritten in
a unit process. An FOL algorithm, which is applied
when multiple data are rewritten in a unit process, is as
follows.

m Algorithm: The Overwritten-Label Filtering
Method 2 (FOL¥)

0 I'nput

This algorithm inputs index vectors V4, V5, ..., V|.
The elements of these vectors are pointers or indices
to storage areas containing data d;q, dj», ..., dj (i = 1,
2, ..., N), respectively, where there may be
duplicated data. The storage area pointed to by v, an
element of V,, is noted by v , and the data stored in

V- isnoted by v d.
0 Output

This algorithm outputs sets of tuples [Od;, dip, ..., dj O
(i=1,2,...,N)of parallel-processable data: S;, S,,
..., Sy (the value of M is obtained as an execution

M
result of this algorithm), where U § = {Ody, diy, ..,

j=1

d,00i=1,2 ..,N} and S, S,, ..., Sy are digoint
sets, i.e, §n §=10 (disjoint decomposition condi-
tion).

O Process conditions

e Processing P, (i =1, 2, ..., N) is applied to a data
tuple Cdiq, di», ..., d;. Oby vector operation after the
application of this algorithm. All the data included in
anoutput set § (j =1, 2, ..., M) may be processed in
parallel or in any order, but any two data belong to
different output sets may not be executed in parallel.
The execution order must not affect the correctness of
the result.

e If va is an arbitrary element of V; and vb is an
arbitrary element of V; before the execution where f,
g0{1 2 ..,L},va~ and vb- are possibly the
same storage area.  That means V4, Vo, ..., V| may
have the same pointers as their elements.

* A work area to be used in this algorithm is reserved
for each storage area pointed to by each element of
V1, Vo, ..., V. The work area pointed to by v is noted
by v w.

O Procedure

(0) Preprocessing:  Set 1 to variable j. Assign a
unique label to each element of index vectors V (k =
1, 2, ..., L). That means, if la is the label of an
arbitrary element of V|, and |Ib is the label of an
arbitrary elements of V,, and these elements are
different, condition la # Ib must hold. The labels may
be assigned before the execution time.

(1) Writing labels: vy, Vio, ..., Vkn are assumed to be
the elements of the index vector V,, where n is the
number of elements of Vq, Vo, ..., V. (where al of
them have the same number of elements). For k=1,
2, ..., L, perform the following process. Write the
labels of viq, Vio, ..., Vin iNto the work areas v, — W,
Vi - W, ..., Vg » W, respectively. The execution order
is arbitrary, and the labels may be processed in
parallel.”

(2) Detection of overwriting: For k =1, 2, ..., L,
perform the following process. Read the labels from
the work areas vy; - W, Vo > W, ..., Vs> W and

compare them with the labels of vii, Vio, ...y Vicn,

* A deadlock may occur in Step (4). A solution to this problem will
be explained later.



respectively. Step (1) must be completed before label
reading. If v;—» w is not equal to the label of v;, it
means that v; is overwritten. The set of all the data
tuples [di4, di, ..., d;. Owhose elements are the data
pointed to by the i-th elements of V4, V,, ..., V|,
respectively, except the tuples which contain a data,
for which the equality check has failed, is the
parallel-processable set S. More exactly, set S is
defined as follows: Iy, Iy, ..., I are assumed to be
the labels assigned to the index vector elements vy;,
Vo, ..., Vi, then §is the set of al the tuples Cvy; - d,
Voi »d, ..., v j-dO(@i =iy, iy, ..., ;) where condition

Vli_’Wzlli O V2i_’W:|2i O O VLi_’WzlLi
holds.

(3) Updating control variables: Add 1toj. Fork=1,
2, ..., L, delete the pointers or indices pointing to

datain atuplein §, from V,. The number of elements
of V isreduced for each k.

(4) Repetition: Repeat the above Steps (1) to (3) until
V| becomes empty. (Testing one of Vy, V,, ..., V| is
enough because all of them have the same number of

elements.) When terminated, set j — 1 to variable M.
]

ELS condition must hold in Step (1) asin FOL1. In
addition, a deadlock may occur unless another
appropriate condition is added on the label writing
order, as explained in Step (1). That means, in the case
that an appropriate writing order of the labels cannot be
guaranteed, the relation in Step (2) does not hold for
any element of the index vectors. Then § may be an
empty set and the control does not exit from the loop in
FOL*.

A method to avoid the above problem is explained.
The elements of the index vectors except the last ones
are written by vector instructions in parallel, but the last
elements are written by scalar instructions sequentially
after the execution of the vector instructions. It is
asserted that there are no shared elements among the
last elements of the index vectors. Then the relation
shown in Step (2) holds for the last elements, and § is
prevented from being empty. However, the above
method may cause a significant decrease of parallelism,
and the acceleration ratio may become less than 1.0.
So, a better method should be devel oped.

The proofs of the termination property and the
disioint decomposition condition are omitted because
they can be proved in the same way as the case of
rewriting single data shown in Subsection 3.2.

The performance of FOL* is examined next. When
the number of data rewritten in a unit process, i.e., L, is
large, the execution time of FOL* becomes larger com-
pared with the main processing, and the acceleration

ratio” of the total process is low. Thus, FOL* is
considered to be practical only when L is less than five
or so. The value of L istwo in the case of the operation
tree rewriting shown in Section 2, so the vectorized
algorithm will be practical in this case.

4. Applications of FOL

Three applications of FOL1 and the resulting perfor-
mances are shown in this section.

4.1 Multiple hashing

There are two ways of collision resolution in hashing:
open addressing and chaining [Knu 73]. Figures4 and 7
apply chaining. The algorithm for multiple hashing
using open addressing in Kanada [Kan 90] is based on a
specialized version of FOL, which is called the
“overwrite-and-check method.” The FOL algorithms
shown in Section 3 are abstractions of this algorithm.

The result of an optimized version of Kanada's
multiple hashing algorithm is shown in this paper. The
method of subscript recalculation in the case of
collisions in this algorithm is different from the original
[Kan 90]. In the original algorithm, the n-element
vector of subscripts, hashedValue[1:n], is computed
from the old subscripts, which are initially equal to the
hashed values, as follows:

hashedValue[1: n] :=

(hashedValue[1: n] + 1) mod size(table);

— All of the elements are incremented by one.
However, if three or more keys in the key vector collid-
e, the keys failed to be entered cause collisions again
when tried to be entered again, because the subscripts
are the same again. Thus the optimized algorithm
recalculates the vector of subscripts as follows:

hashedValue[1: n] :=

(hashedValue[1: n] + (key[1: n] & 31) + 1) mod

size(table);

— “&” means bitwise “and” operation.

— size(table) > 32 is asserted.

The optimized algorithm is coded in Fortran™™ and
executed on the Hitachi S-810 [Nag 84], which is an
older-generation vector processor than the S-820. All of
the innermost loops are vectorized. Figures 8 and 9
display the CPU time and acceleration ratio of multiple
hashing where the table sizes are 521 and 4099. The
horizontal axes show the load factor (the ratio of the
filled table entries) after entering the keys. The
acceleration ratio reaches the maximum value, 5.2 or

* The acceleration ratio means the ratio of the vectorized total
execution time and the original sequential execution time.

** However, because the vectorized algorithm cannot be written in
standard Fortran, the program violates its semantics using vectoriza-
tion forcing option (* VOPTI ON).



12.3, when the load factor is 0.5. The reason that the
acceleration ratio increases when the load factor is less
than 0.5 is that the vector length is proportional to the
load factor. The reason that the acceleration ratio
decreases when the load factor is between 0.5 and 1.0 is
that the effect of reducing the performance caused by
the increase of sequentiality is larger than the
acceleration effect caused by the increase of the vector
length. However, the acceleration ratio converges to a
value larger than 1.0 when the load factor gets closer to
1.0. This fact means that the vector processing is faster
than the sequential processing, because the parallelism
still remains when the load factor gets closer to 1.0.
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Figure8. CPU time of multiple hashing into an
empty hash table by S-810 (N : table size)
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Figure 9. Acceleration ratio of multiple hashing into
an empty hash table by S-810 (N : table size)

The results of the optimized algorithm shown in
Figures8 and 9 are better than those of the original
[Kan 90Q] in that the acceleration ratio is larger when the
load factor is between 0.5 to 0.98. This is the result of
improving the method of subscript recalculation for

colliding keys.

4.2 Addresscalculation sorting and distribution
counting sort

An FOL1-based algorithm of an address calculation
sorting [Flo 60, Gon 84] and the results of the address
calculation sorting and a distribution counting sort
[Knu 73] are shown in Kanada [Kan 90]. The summary
of the results (the same results as shown in [Kan 90]) is
shown in Table 1. The maximum acceleration ratio of
the address calculation sorting is more than ten.

Table1l. CPU time and the acceleration ratio of

O(N) sorting algorithms

Algorithm N S-810/20 CPU time (us) | Acceleration
Sequential | Vectorized ratio

Address | 28 289 110 262
Calculation | 2° 4,286 560 7.65
Sorting” | 2% 66,955 5,215 12.84
Distribution | 28 12,206 1,522 802
Counting | 2° 13,072 1,738 7.52
Sort™ P 30,089 5,667 531

* The size of the work array Cis3n.
** The size of the work array is 21, which is the range of the
data.

4.3 Entering multipledatainto abinary tree

An algorithm that enters multiple data into a linked
binary tree using FOL1 has been developed. The treeis
not balanced in this algorithm. Figure 10 displays a
preliminary result of a performance evaluation on the S
810. The horizontal axis indicates the number of
uniformly random keys entered into the tree, and the
vertical axis indicates the acceleration ratio. The tree
has Ni elements, each of which contains a random key,
before entering the keys. The reason why an empty tree
is not used for the benchmarking is that it is too
disadvantageous for vector processing because al the
keys to be entered conflict when the tree is empty. The
number of trials for each plotted point is only one, so
this result is not very reliable. However, we can
conclude that the average acceleration ratio is more
than 1.0, though it is not a factor of ten, if the initia
tree size is not very small and the amount of data to be
entered is not very small.

5. Related Works

Appel and Bendiksen's vectorized garbage collection
algorithm [App 89] implicitly includes a very
specialized version of FOL. Miki et. al. use a similar
technique in the vectorized LSI routing algorithm
[Mik 91]. In both algorithms, the first output set S; is
implicitly computed. The output sets S,, S;, ..., Sy are
not computed because they are unnecessary in these



algorithms.
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Figure 10. Acceleration ratio of entering multiple

data into a binary tree by S-810

6. Conclusion

The filtering-overwritten-label method (FOL) given in
this paper enables vector processing over a wide range
of applications which include rewriting data with shared
elements or possibly rewriting the same data element
two or more times. The evaluation results show that the
application of FOL to multiple hashing and to an
address calculation sorting accelerates the execution by
a factor of ten. FOL is a promising vector-processing
technique for processing lists, trees, graphs or other
symbolic processings on pipelined vector processors or
SIMD parallel processors such as CM-2 (Connection
Machine).

The main focus of future works will be to apply FOL
to various symbolic algorithms including tree re-
balancing and graph rewriting.
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