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Abstract
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Conventional processing techniques for pipelined vector processors such as the Cray-XMP, or data-
parallel computers, such as the Connection Machines, are generally applied only to independent
multiple data processing.  This paper describes a vector processing method for multiple processings
including parallel rewriting of dynamic data structures with shared elements, and for multiple process-
ings that may rewrite the same data item multiple times.  This method enables vector processing when
entering multiple data items into a hash table, address calculation sorting, and many other algorithms
that handle lists, trees, graphs and other types of symbolic data structures.  This method is applied to
several algorithms; consequently, the performance is improved by a factor of ten on a Hitachi S-810.

Keywords.  symbol processing;  vector processing;  hashing;  sorting.

1. Introduction

An attached vector processor, the Hitachi M-680H IDP (Integrated Database Processor)
[10], is designed for database processing and has been applied to several symbolic processing
applications [14].  However, most other vector processors, such as the Cray-XMP or Hitachi
S-3800, are mostly used for numerical processing, and are rarely used for symbolic
processing.  One of the reasons that the extension of applications from numerical to non-
numerical areas has been prevented is that no vectorization method has yet been established
that is widely applicable to processing dynamic data structures connected by pointers, such as
linear lists, trees and graphs.

The symbolic vector-processing methods developed by Kanada, et. al. [5, 6, 7] enable
vector processing of multiple dynamic data structures by vectorization, a program transfor-
mation.  When these methods are applied, the data structures are accessed through index vec-
tors, which contain pointers or indices to the data to be processed.  These methods are called
simple index-vector-based vector-processing methods (SIVP) in this paper.  The list-vector-
processing facility and conditional control facilities [4], such as masked operations, of vector
processors are used in SIVP.

However, conventional vector-processing methods including SIVP are basically applied
only to independent multiple data processings.  This means that these methods cannot vec-
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torize multiple processings including rewriting of data with shared elements, such as graphs,
and they cannot vectorize multiple processings that may rewrite the same data item multiple
times, such as entering data items into a hash table (See Section 2).  The filtering-overwritten-
label method (FOL) explained in this paper solves this problem.

The above problem is explained further in Section 2.  The principle and algorithms of FOL
are shown in Section 3.  Several applications and performance evaluations of FOL are shown
in Section 4.  Related works are mentioned briefly in Section 5.

2. Problems in Vector Processing of Shared Data

In the symbolic vector-processing methods shown in Kanada [5, 6, 7], data items are read
and writ ten through index vectors.  Figure 1 illustrates two types of index vectors: a vector of
pointers to the data items, and a vector of subscripts or displacements of the data items.  Using
index vectors, parts of the symbolic data are gathered into a vector register or scattered to
main storage by the so-called list-vector instructions or indirect vector load/store instructions.

The classes of vectorizable and unvectorizable processings are explained in Figure 2.
SIVP is basically applicable only for independent multiple data processings.  This means that
SIVP can be applied to an index vector that contains pointers or indices to independent data
items (Figure 2a).  However, SIVP can also be applied to read-only processings of multiple
data items including shared ones.  The index vector may have pointers to the same data items
(Figure 2b), as long as it does not update the data.  But SIVP cannot be applied for rewriting
multiple data items with sharing (Figure 2b), because if it were applied, the processings that
must be performed sequentially would be performed in parallel.  This may give incorrect
results because the processing order of the elements is not defined in vector processors with
parallel pipelines, such as S-3800.  Therefore, SIVP cannot be applied for rewriting partially
shared data structures (illustrated in Figure 3), because read-only vector-processable index
vectors (Figure 2b) may be generated while processing such data structures.Two examples
that cannot be processed by SIVP methods are shown below (in Figure 4).  The first example
shows multiple data items being entered into a hash table.  This processing is called multiple
hashing in this paper.  The entered data items are chained from the hash table entries.
Figure 4a shows sequential processing in which two keys are being entered.  The numbers
above the arrows indicate the order of execution.  Keys 353 and 911 are entered in this order.
Because the hashed values of these keys are both five, they collide.  So they are chained from
the same hash table entry.  Figure 4b shows the problem of multiple hashing by forced vector
processing.  The keys are initially stored in a vector, and the hashed values are calculated by
data-parallel operations, or vector operations, and are stored into another vector that is used as
an index vector in the following process.  If no collisions occur, the key writing is processed
properly.  However, collisions make correct processing impossible.  The pointer to the second
key overwrites that to the first key in this figure.

The second example is tree rewriting, which transforms an input tree into an equivalent
final form by applying a rewriting rule.  Figure 5 illustrates two ways of rewriting an oper-
ation tree; here, the associative law is used as the rewriting rule.  The associative law is
expressed as  X * (Y * Z) → (X * Y) * Z.  The arrow indicates the direction of rewriting.  The
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input tree is  a * (b * (c * d))  in Figure 5.  The rewriting is applied to nodes n3 and n5 in
Figure 5a, and to nodes n1 and n3 in Figure 5b.  Node n3 is “shared” between these two
rewritings.  A forced parallel rewriting by vector processing causes a tree that is not
equivalent to the original to be generated, or the rewriting process to be aborted because of a
nonexistent (phantom) node access.  In this example, multiple (two) nodes are rewritten in a
unit process, i.e., one rewriting.

3. A Solution: Filtering-overwritten-label Method

A method of rewriting multiple symbolic data items with sharing, called the filtering-over-
written-label method (FOL), has been developed.  The principle and algorithms of FOL are
explained in this section.

3.1 The principle of FOL

The problem explained in Section 2 is solved by the decomposition of a data set into paral-
lel-processable subsets, as illustrated in Figure 6.  In this principal method, the element set (S)
of the original index vector is split into parallel-processable sets (S1, S2, and S3) and is
restored into parallel-processable index vectors (V1, V2, and V3).  These index vectors are
processed separately by vector operations.  Thus, the elements of a vector are processed in
parallel and the vectors are processed one by one.1  Pointers to one data item, a for example,
are scattered into different index vectors.  This principal method processes the unshared part
of the multiple data items in parallel and the shared part sequentially.

To implement the above principal method, a method of decomposing data sets into parallel-
processable sets must be developed.  The data that cannot be processed in parallel are multiple
pointers or indices that point to one data item, and they can be detected by comparing all of
the pairs of pointers or indices.  However, this process needs O(N2) comparisons, so it will de-
crease performance.  FOL2 is a method of decomposing a data set in O(N) time in normal
cases by vector processing.

Before explaining the algorithms of FOL in the following subsections, a method of
multiple hashing using FOL is explained informally (See Figure 7)3.  Only the keys are
entered into the hash table in this example for the sake of simplicity.  The keys to be entered
are initially stored in a vector.  Each hash table entry has a work area for storing labels.

The detection of collisions (See FOL processes 1 and 2 in Figure 7) is performed entirely
by vector operations in the following manner.  In Step 1, the subscripts of the key vector are
written into the work area indexed by the hashed values.  These subscripts are called labels in
FOL.  In Step 2, the labels are read immediately after writing, using the same indices, i.e., the
hashed values.  These label writing and reading processes are performed using the list-vector
instructions.  The elements of the read vector are compared with the original labels.  They are
equal if there are no collisions.  However, they are not equal when there are collisions,
because collisions cause overwriting of labels in the work areas.  The results of the
comparisons are stored into a mask vector, a Boolean vector.  The key vector elements, whose
corresponding mask vector elements are true, are parallel-processable data items.  In the
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example in Figure 7, the second to fourth elements of the key vector form the first parallel-
processable set of keys, because the second to fourth elements of the mask vector are true.
These keys are entered into the hash table in parallel in Step 3.  In Step 4, the above process
is repeated until all of the keys are classified into a parallel-processable set, and all of them
are successfully entered into the hash table.

3.2 FOL for rewriting single data item per unit process

FOL is a generalization of the multiple hashing method explained in the previous subsec-
tion.  FOL can be applied to a wide range of processings that rewrite multiple data items with
possible sharing.  The FOL algorithm for rewriting a single data item per unit process to be
vectorized is shown in this subsection.  An extension of FOL for rewriting multiple data items
per unit process, such as rewriting the operation tree shown in Section 2, is shown in the next
subsection.

An FOL algorithm that decomposes a set of data items into parallel-processable sets is
shown below.  The whole process of this algorithm can be performed by vector operations on
a vector processor such as the Hitachi S-3800.

n Algorithm:  Filtering-overwritten-label Method 1 (FOL1)

o Input

This algorithm inputs an index vector V.  The elements of V are pointers or indices to stor-
age areas containing data items d1, d2, …, dN, where there may be duplicated data items
(i.e., the same data items may appear multiple times in the sequence.  The storage area
pointed to by v, an element of V, is denoted by v→, and the data item stored in v→  is
denoted by v→d.

o Output
This algorithm outputs the sets of parallel-processable data items S1, S2, …, SM (the value

of M is obtained as a result), where U
i =1

 M

 Si  = {d1, d2, …, dN} and S1, S2, …, SM are disjoint

sets, i.e., Si ∩ Sj = ∅  for arbitrary i and j (disjoint decomposition condition).

o Processing conditions

  • Processing Pi  (i = 1, 2, …, N), which corresponds to the main processing in Figure 7, is
applied to data item di by vector operation after the execution of this algorithm.  All the
data items included in an output set Sj ( j = 1, 2, …, M) may be processed in parallel or in
an arbitrary order in processing Pi.

4  The order of processing for each output set can be
arbitrary, but two data items belonging to different output sets may not be executed in
parallel.  So, any two output sets must be processed sequentially.  The execution order
between the processings of two arbitrary data items must not affect the correctness of the
result.5

  • If va and vb are arbitrary elements of V before execution, va→ and vb→ may possibly be
in the same storage area.  However, the data items pointed to by va and that pointed to by
vb are regarded as non-identical data items in the algorithm description.
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  • For each element v of the index vector V, a work area denoted by v→w is allocated in stor-
age area v→.  This means that, if va→ and vb→ are the same storage area, va→w and
vb→w are also the same work area even when va and vb are not identical.

o Procedure

(0) Preprocessing:  Set 1 to variable j.  Assign a unique label to each element of V.  The
labels may be assigned before the execution time if possible.6

(1) Writing labels:  Write the labels of v1, v2, …, vn into the work areas v1→w, v2→w, …,
vn→w; where n is the number of elements of V.  The execution order is arbitrary, and the
labels may be processed in parallel.

(2) Detection of overwriting:  Read the labels from work areas v1→w, v2→w, …, vn→w, and
compare them with the labels of v1, v2, …, vn, respectively.  Step 1 must be completed
before reading the labels.  (Synchronization may be necessary.)  If the value read from
vi→w is not equal to the label of vi, vi has been overwritten.  Then, the set of all data items
pointed to by the elements of V except the data items that failed the equality check forms
the parallel-processable set.  This set is named Sj.  More exactly, set {u1→d, u2→d, …,
um→d} is assigned to Sj, where uk (k  = 1, 2, …, m) are all the elements of V, which
satisfies the relation uk→w = lk; where lk is the label for uk.

(3) Updating control variables:  Add 1 to j.  Delete the pointers or indices pointing to data
items in Sj, from V.  The number of elements in V is reduced, thus the value of n is
changed.

(4) Repetition:  Repeat Steps 1 to 3 above until V becomes empty.  When terminated, set j –
1 to variable M.  n

In the example of multiple hashing shown in Subsection 3.1, the main processing (entering
of keys) is amalgamated to the steps of FOL for efficiency, but the main processing is not
included in FOL1 (the above algorithm), to make the algorithm multi-purpose.

The following condition must hold for the sake of the correctness of FOL1.

n The exclusive label storing condition (ELS condition)

One of the multiple labels written into one work area is stored correctly.  This means that if
two labels la and lb are written into the same area in parallel, the stored value is not an
amalgam of la and lb.  Which one of these labels is successfully stored is arbitrary. n

The ELS condition is guaranteed when the label length is equal to or less than the machine
word length in normal pipelined vector processors.  This condition holds hereafter.7

The lemmas and theorems in FOL1 are shown below.

n Theorem 1:  Termination property

Algorithm FOL1 terminates.

o Proof:  Any label read from a work area is equal to one of the original labels written to the
work area by the ELS condition.  Thus, the read label is equal to at least one of the original
labels in Step 2, and Sj is not an empty set for arbitrary j.  This means that the number of

elements in the index vector V is reduced every time in Step 3.  Therefore, V always becomes
empty in finite iterations, and FOL1 terminates.  n
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The correctness of FOL1 will be proved using two lemmas.

n Lemma 1:  Disjoint decomposition

The disjoint decomposition condition shown in the output specification of FOL1 holds.
That means, the union of the output sets, S1, S2, …, SM, is equal to the input data set and Si ∩
Sj = ∅  for arbitrary i and j when FOL1 terminates.

o Proof:  If the following conditions hold, the disjoint decomposition condition holds:

(a) each element of the output set Sj ( j = 1, 2, …, M) is equal to an input data item,
(b) each input data item is equal to an element of an output set, and
(c) the output sets are disjoint.

First, we show condition (a).  The index vector V consists of all the pointers, each of which
points to an input data item at the beginning of execution.  An element, e, of an arbitrary
output set Sj is is equal to an input data item, because it is selected from all of the data items
that the elements of V point to in Step 2.

Next, we will show conditions (b) and (c).  V consists of all the pointers or indices to the
input data items at the beginning of execution but to no others.  V becomes an empty set at
termination.  The elements are deleted from V in Step 3 immediately after they are added to
one of the output sets Sj ( j = 1, 2, …, M) in Step 2, and all the elements are deleted from V
before execution terminates.  That means that all of the data items pointed to from V are added
to one of the output sets.  In addition, the pointer or index to an element of Sj is deleted
immediately after the content of Sj is computed, so this pointer or index never belongs to Sm

(m > j).  Thus, the output sets are disjoint.  n

The cardinalities (the numbers of elements) of S1, S2, …, SM are denoted by  S1 ,  S2 , …,
 SM .  Then, the following lemma and theorem hold.

n Lemma 2

If dk and dl (k ≠ l) are arbitrary elements of an output set Sk, then dk and dl are in different
areas (dk and dl are different data items).

o Proof:  The lemma is proved by contradiction.  If dk and dl are in the same area, the point-

ers or indices to them, which are the elements of V, have the same value.  The labels assigned
to these elements are stored into the same work area.  One of these labels is overwritten by the
other, so dk and dl are included in different output sets in Step 2.  This is a contradiction, so

the lemma is concluded.   n

n Theorem 2:  Correctness

The output conditions hold when FOL1 terminates.

o Proof:  This theorem is proved by Lemmas 1 and 2.  (Lemma 2 guarantees that the output
sets are parallel-processable.)  n

One more theorem is given but the proof is omitted.
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n Theorem 3

The following relation always holds:  S1  ≥  S2  ≥ … ≥  SM , and  M = 1 (the number of
iterations in FOL1 is equal to one) when the input data does not have duplicates.  n

The allocation of the work area used in FOL1 is explained below.  Normally, the work area
can share storage with the area used for main processing.  This is because it does not matter
whether the value held in the area pointed to by the elements of V is destroyed before FOL1 is
applied by writing labels, and because there is no possibility that the wrong value, which is
not a correct label, is read in the process of overwriting detection.  It does not matter whether
the value is destroyed because main processing will rewrite the storage area where the labels
are written by FOL1.  Conversely, the condition that the main processing always rewrites the
work area, where the labels are written, or a weaker condition must hold.  There is no
possibility that the wrong value is read, because there is no possibility that, while reading
labels in Step 2, the labels are read from an area where no labels were written, because the
ELS condition holds and the labels are read through the same pointers or indices used when
writing the labels.

Because the size of each work area is log2N bits or more, the shared area must be extended
when the main processing requires less area.  The size must be log2N bits or more because the
work area must have enough capacity to hold one of N different labels.

The performance of FOL1 is examined next.  The sequentially processed part of main
processing is not accelerated by FOL.  On the contrary, the execution of this part becomes
slower because of the overhead of parallel-processable data detection.  Consequently, the
sequential execution is better than FOL in processing where most of the data items cannot be
processed in parallel.  However, if sharing rarely occurs and most of the data items can be
processed in parallel, FOL is promising.

The following theorem guarantees that the execution time of FOL1 is O(N) when the
amount of sharing is small.

n Theorem 4:  O(N ) execution time

If condition   S1  » ∑
i = 2

M

  Si   holds,  then the execution time of FOL1 is O(N).

o Proof:  The execution time of Steps 1, 2 and 3 in the j-th iteration is approximately in

proportion to ∑
i = j

M

  Si  , the number of elements of V ( j = 1, 2, …, M).  Thus, if the above condi-

tion holds, the execution time of the second and later iterations can be ignored compared with
that of the first iteration.  Then the execution time of FOL1 is O(N), because the execution
time of the first iteration is approximately in proportion to N, the number of elements of V in

the initial state, because  ∑
i = 1 

M

  Si  =  N.  n

In particular, the execution time of FOL1 is O(N) when there are no duplicates in the input
data, by Theorems 3 and 4.
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A lemma and two theorems are given.  Theorem 5 guarantees the best performance in a

sense, when condition   S1  » ∑
i =  2

M

  Si   does not hold.

n Lemma 3

If there are M’ duplicates in the input data, all of which are the same, including the original
data (i.e., there is a storage area that is shared by M’ input data), and if there are no more than
M’ duplicates, the number of output sets, M, is equal to M’.

o Proof:  If there are M’ duplicates, V has M’ elements, which point to the same storage area
containing the duplicated data, at the beginning of FOL1.  As explained in the proof of
Theorem 1, there always exists a label that coincides with the original in Step 2.  In addition,
each input data item has a unique label and only one of the labels is read repeatedly M’ times,
so, in the labels of the M’ elements of V, there is exactly one label that coincides.  Therefore,
exactly one of these elements is deleted from V every time Step 3 is executed.  The number of
iterations in FOL1 is equal to M.  Thus, M’ is equal to M.   n

n Theorem 5:  Minimum decomposition

If  T1 ∪  T2 ∪  … ∪  TM’’  is an arbitrary decomposition of the input data, i.e.,U
i = 1

 M’’

 Ti   = {d1, d2,

…, dN}, where the element of Ti is parallel-processable for arbitrary i, and the number of

output sets of FOL1 is M, then  M’’ ≥ M.  That means that the number of output sets of FOL1
is the minimum.

o Proof:  The duplicated data item does not belong to the same output set because, if it did,
the output set would not be parallel-processable.  Thus, if there are M’ duplicates in the input
data, the number of parallel-processable sets is no less than M’ for arbitrary decomposition.
The number of output sets of FOL1 is also M’ by Lemma 3.  Thus, the number of output sets
of FOL1 is the minimum.  n

n Theorem 6:  Worst execution time

The execution time of FOL1 is O(N2) when the following condition holds:   S1  =  S2  =
… =  SM  = 1.

o Proof:  The above condition means that the number of elements of V decreases one by one.
So the total execution time of the j-th iteration is  (N – j + 1) t + c,  if c is a constant and the
sum of the execution time for a vector element in an iteration is t, because the total execution
time is approximately in proportion to the number of vector elements, and the total execution

time is ∑
j = 1

N

 (N – j + 1) t + C ,  which means it is O(N2). n

The application area of FOL1 is considered next.  FOL1 is a vectorization/parallelization
method that can be used in a wide range of applications.  Multiple hashing is a typical mul-
tiple data processing where a small number of shared items exist, but the same condition holds
in many applications, for example, address calculation sorting and parallel rewriting of lists,
trees (DAGs) or graphs with sharing, as illustrated in Figure 3.
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Finally, a method of improving the execution time of FOL1 by simplifying its process is
examined.  The following simplified method can be applied when there is no duplication in
the values to be written into the area pointed to by the elements of the index vector V.  In this
case, these values can be used for labels, and the label writing and the main processing (i.e.,
writing the values) can be performed at the same time.  For multiple hashing, the above condi-
tion holds when the keys are unique and are used as labels.

3.3 FOL for rewriting multiple data items per unit process

FOL1 can be applied when only one data item is rewritten in a unit process.  An FOL algo-
rithm, which is applied when multiple data items are rewritten in a unit process, is as follows.

n Algorithm:  Filtering-overwritten-label Method 2 (FOL*)

o Input

This algorithm inputs index vectors V 1, V2, …, VL, which have the same number of
elements.  The elements of these vectors are pointers or indices to storage areas containing
data items di1, di2, …, di L (i = 1, 2, …, N), where there may be duplicated data items.  The
storage area pointed to by v, an element of Vk, is denoted by v→, and the data item stored
in v→ is denoted by v→d.

o Output

This algorithm outputs sets of tuples 〈  di1, di2, …, diL 〉 (i = 1, 2, …, N) of parallel-process-
able data items: S1, S2, …, SM (the value of M is obtained as an execution result of this

algorithm), where U
j =1

 M

 Sj  = {〈  di1, di2, …, diL 〉   i = 1, 2, …, N} and S1, S2, …, SM are disjoint

sets, i.e., Si ∩ Sj = ∅  (disjoint decomposition condition).

o Processing conditions

  • Processing Pi (i = 1, 2, …, N ) is applied to a data tuple 〈  di1, di2, …, diL 〉 by vector
operation after the application of this algorithm.  All the data items included in an output
set Sj ( j = 1, 2, …, M) may be processed in parallel or in any order, but any two data items
belonging to different output sets may not be executed in parallel.  The execution order
must not affect the correctness of the result.

  • If va is an arbitrary element of Vf and vb is an arbitrary element of Vg before the execution
where  f, g ∈  {1, 2, …, L}, va→ and vb→ are possibly the same storage area.  This means
that V1, V2, …, VL may have pointers with the same values as their elements.

  • Work areas to be used in this algorithm are reserved for each storage area pointed to by
each element of V1, V2, …, VL.  The work area pointed to by v is denoted by v→w.

o Procedure

(0) Preprocessing:  Set 1 to variable j.  Assign a unique label to each element of index vec-
tors Vk (k = 1, 2, …, L).  That means, if la is the label of an arbitrary element of Vk1 and lb
is the label of an arbitrary element of Vk2 and these elements are different, condition la ≠
lb must hold.  The labels may be assigned before execution.
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(1) Writing labels:  vk1, vk2, …, vkn are assumed to be the elements of the index vector Vk,
where n is the number of elements of V1, V2, …, VL (where all the vectors have the same
number of elements).   For k = 1, 2, …, L, perform the following process.  Write the labels
of vk1, vk2, …, vkn into the work areas vk1→w , vk2→w , …, vkn→w, respectively.  The
execution order is arbitrary, and the labels may be processed in parallel.8

(2) Detection of overwriting:  For k = 1, 2, …, L, perform the following process.  Read the
labels from work areas vk1→w, vk2→w, …, vkn→w and compare them with the labels of
vk1, vk2, …, vkn, respectively.  Step 1 must be completed before label reading.  If vi→w is
not equal to the label of vi, it means that vi is overwritten.  The set of all data tuples 〈  di1, di-

2, …, diL 〉 whose elements are the data items pointed to by the i-th elements of V1, V2, …,
VL, respectively, except the tuples which contain data items, for which the equality check
has failed, is the parallel-processable set Sj.  More exactly, set Sj is defined as follows: l1j,
l2j, …, lLj are assumed to be the labels assigned to the index vector elements v1i, v2i, …, vLi,

then Sj is the set of all tuples 〈  v1i→d, v2i→d, …, vLi→d  〉   (i = i1, i2, …, in), where condition
v1i→w = l1i  ∧   v2i→w = l2i  ∧   …  ∧   vLi→w = lLi  holds.

(3) Updating control variables:  Add 1 to j.  For k = 1, 2, …, L, delete the pointers or
indices pointing to data items in a tuple in Sj, from Vk.  The number of elements in Vk is
reduced for each k, thus the value of n is changed.

(4) Repetition:  Repeat Steps 1 to 3 above until Vk becomes empty.  (Testing only one of V1,
V2, …, VL is enough because they all have the same number of elements.)  When termi-
nated, set j – 1 to variable M.  n

The ELS condition must hold in Step 1 as in FOL1.  In addition, a deadlock may occur
unless another appropriate condition is added to the label writing order, as explained in
Step 1.  This means that the relation in Step 2 does not hold for any element of the index
vectors, if the writing order of a vector is not the same as others.  Then, Sj may be an empty
set and the control does not exit from the loop in FOL*.

A method to avoid the above problem is explained.  The elements of the index vectors
except the last ones are written by vector instructions in parallel, but the last elements are
written by scalar instructions sequentially after the execution of the vector instructions.  It is
asserted that there are no shared elements among the last elements of the index vectors.  Then,
the relation shown in Step 2 holds at least for the last elements, and Sj is prevented from being
empty.  Thus, if the possibility that the relation does not hold for the elements processed by
vector instructions is small enough, this method will be sufficient.  However, this method may
cause a significant decrease in parallelism when the possibility is not small, and the
acceleration ratio may become less than 1.  So, a better method should be developed.

The proofs of the termination property and the disjoint decomposition condition are omit-
ted because they can be proved in the same way as the case of rewriting single data item
shown in Subsection 3.2.

The performance of FOL* is examined next.  When the number of data items rewritten in a
unit process, i.e., L, is large, the execution time of FOL* becomes larger compared with the
main processing, and the acceleration ratio9 of the total process is low.  Thus, FOL* is
considered to be practical only when L is less than five or so.  The value of L is two in the
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case of the operation tree rewriting shown in Section 2, so the vectorized algorithm will be
practical in this case.

4. Applications of FOL

Three applications of FOL1 and the resulting performances are shown in this section.

4.1  Multiple hashing

There are two collision resolution methods in hashing: open addressing and chaining [11].
The algorithms previously shown in this paper apply chaining.  The algorithm for multiple
hashing using open addressing, which is based on a specialized version of FOL, is shown in
Figure 8.  This is an optimized version of a multiple hashing algorithm called the “overwrite-
and-check method” [8].  The keys are used as labels in this algorithm, and, thus, only keys are
contained in the hash table.  Because all the labels must be different, all the keys must be
different in this algorithm.  Each unused entry in the hash table is initialized to a special value,
unentered, which is not used as a key value.  unentered is used to display whether the entry is
used or not.

The algorithm is written in a language with a parallel array assignment statement and a
where statement, such as Fortran 90.  Each assignment in each parallel array assignment
statement may be performed in parallel.  However, no two statements can be executed in
parallel, if the parallel execution may cause a wrong result.  For example, if A = (1, 2, 3), B =
(10, 11, 12), and M is a mask vector (a boolean vector used for controlling vector operations),
and the value is (true, false, true), the following statement updates the value of A as (10, 2,
12);

where M do A := B; end where;

This language also has a countTrue function and a where operator.  If M is a mask vector,
expression countTrue(M) returns the number of occurrences of true in M.  For example, if M
is array (true, false, true), then countTrue returns 2.  Expression A where M means a vector of
elements of A which correspond to true elements of M.  For example, if A = (1, 2, 3) and M =
(true, false, true), A where M returns (1, 3).  Expression A[x : y] in Figure 2 means a slice
(subarray) of A, (A[x], A[x+1], …, A[y]).

The difference between the old and new algorithms lies in the subscript recalculation meth-
ods in the case of collisions.  In the original algorithm, the n-element vector of subscripts,
hashedValue[1 : n], is computed from the old subscripts, which are initially equal to the
hashed values, as follows:

hashedValue[1 : n] :=
(hashedValue[1 : n] + 1) mod size(table);

— All of the elements are incremented by one.

However, if three or more keys in the key vector collide, the keys that were not entered
successfully cause collisions when tried to be reentered, because the subscripts are still the
same.  Thus the optimized algorithm recalculates the vector of subscripts as follows:
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hashedValue[1 : n] :=
(hashedValue[1 : n] + (key[1 : n] & 31) + 1) mod size(table);

— “&” means bitwise “and” operation.  It is asserted that size(table) > 32.

The optimized algorithm is coded in Fortran10 and executed on Hitachi S-810 [13], which
is an older-generation vector processor than the S-3800.  All of the innermost loops are
vectorized.  Figures 9 and 10 display the CPU time and acceleration ratio of multiple hashing
when the table sizes are 521 and 4099.  The horizontal axes show the load factor (the ratio of
the filled table entries) after entering the keys.  The acceleration ratio reaches the maximum
value, 5.2 or 12.3, when the load factor is 0.5.  The reason why the acceleration ratio increases
when the load factor is less than 0.5 is that the vector length is proportional to the load factor.
The reason why the acceleration ratio decreases when the load factor is between 0.5 and 1.0 is
that the effect of reducing the performance caused by the increase in sequentiality is larger
than the acceleration effect caused by the increase in vector length.

The results of the optimized algorithm shown in Figures 9 and 10 are better than those of
the original [8] in that the acceleration ratio is larger when the load factor is between 0.5 to
0.98.  This is the result of improving the method of subscript recalculation for colliding keys.

4.2 Address calculation sorting and distribution counting sort

There is a variation in address calculation sorting called the linear probing sort [3].  This
algorithm uses a work array, C.  Data are “hashed” and stored into C.  The “hashing function”
has the following property.

data[i] ≤ data[ j] ⇒  hash(data[i]) ≤ hash(data[ j]) (1 ≤ i ≤ n, 1 ≤ j ≤ n)

Because of this property, it is not really a hashing function, but an FOL technique that can
be applied in the same way as multiple hashing.  The order of data items stored in array C is
sorted because of this function, if it is not disordered by the processing of colliding data items.
The data in C are not contiguously stored, so they are packed into another array.  The original
array, data, can be used for this purpose.  The algorithm is shown in Figure 11.

This algorithm can be vectorized using FOL1.  The vectorized algorithm is shown in
Figure 12.  The data items to be sorted are asserted as non-negative here.  This program con-
sists of six parts, A through F.  They correspond to the same name parts in the scalar
algorithm except E, which is specific to vector processing based on the FOL method.  The
new data items are inserted into the sorted array C in part C.  However, if old data items are
already stored in these places, they are saved to array work in part C and restored to the next
available places of C in part D.

There are two major differences between the hashing used in this address calculation
sorting and the multiple hashing shown in the previous subsection.  One difference is that the
unique identifiers are used as labels instead of keys in the case of the multiple hashing.  The
assertion that the data items are non-negative is necessary because of the sharing of arrays be-
tween identifiers and the data items to be sorted, but this assertion can be eliminated if a dif-
ferent array is used for each purpose.

The other difference is the processing of colliding data items.  Colliding data items must be
inserted in an appropriate place in the sequence of sorted data.  An attempt is made to insert
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all the colliding data items  in parallel using vector operations.  All unused entries in C are ini-
tialized to a special value, unentered, which is greater than any data value.  This makes the
above insertion possible.

Figure 13 shows an example of the address calculation sorting process compared to the
original sequential sorting process.  Though this algorithm uses a lot of local arrays, the size
of these arrays, except C, can be remarkably reduced by an optimizing transformation.
However, C must be at least twice as large as n.

The distribution counting sort [11] can also be vectorized using the overwrite-and-check
technique.  The vectorized distribution counting sort algorithm is omitted here.

A summary of the results  is shown in Table 1.  The maximum acceleration ratio of the
address calculation sorting is more than ten.

4.3 Entering multiple data items into a binary tree

An algorithm that enters multiple data items into a linked binary tree using FOL1 has been
developed.  The tree is not balanced in this algorithm.  Figure 14 displays the result of a
performance evaluation on the S-810.  The horizontal axis indicates the number of uniformly
random keys entered into the tree, and the vertical axis indicates the acceleration ratio.  The
tree has Ni elements, each of which contains a random key, before entering the keys.  The
reason why an empty tree is not used for benchmarking is that it is too disadvantageous for
vector processing because all the keys to be entered create conflict when the tree is empty.
The number of trials for each plotted point is only one, so this result is not very reliable.
However, we can conclude that the average acceleration ratio is more than 1, though it is not a
factor of ten, if the initial tree size is not very small and the amount of data to be entered is not
very small.

5. Related Works

Appel and Bendiksen’s vectorized garbage collection algorithm [1] implicitly includes a
very specialized version of FOL.  Suzuki et. al. [12] use a similar technique in the vectorized
LSI routing algorithm.  In both algorithms, the first output set S1 is implicitly computed.  The
output sets S2, S3, …, SM are not computed because they are unnecessary in these algorithms.

6. Conclusion

The filtering-overwritten-label method (FOL) given in this paper enables vector processing
over a wide range of applications which include rewriting data with shared elements or
possibly rewriting the same data item multiple times.  The evaluation results show that the
application of FOL to multiple hashing and to an address calculation sorting accelerates
execution by a factor of ten.  FOL is a promising vector-processing technique for processing
lists, trees, graphs or other symbolic processings on pipelined vector processors or data-
parallel computers such as the Connection Machines.
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The main focus of future works will be to apply FOL to various symbolic algorithms
including tree rebalancing and graph rewriting.
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———————————————————————————————
input table : The hash table.

key[1 : n] : A set of keys to be entered {only keys are
entered in this algorithm}.

output table : The hash table where key[1 : n] are entered in.
———————————————————————————————
local hashedValue[1 : n], entered[1 : n]. /* local variables */

/* Computing hashed values and entering data into the table */
hashedValue[1 : n] := hash(key[1 : n]);

/* Calculate hashed values */
/* {for example, hash(x) = x mod size(table)}. */

where table[hashedValue[1 : n]] = unentered do
/* Detection of conflict among the data to be entered and */
/* already entered data. */

table[hashedValue[1 : n]] := key[1 : n]; (2.1)
/* Enter the keys only where they have not yet been entered. */
/* More than one data item may be written into a hash table entry. */

end where;

for i in 1 .. size(table) loop
/* Checking unentered elements and collecting them */

entered[1 : n] := (key[1 : n] = table[hashedValue[1 : n]]);
nrest := countTrue(entered[1 : n]); (2.2)

/* Count number of trues in boolean array ‘entered’. */
hashedValue[1 : nrest] := hashedValue[1 : n] where not entered[1 : n];

/* Pack unentered elements in hashedValue[1 : n]. */
key[1 : nrest] := key[1 : n] where not entered[1 : n]; (2.3)

/* Pack unentered elements in key[1 : n]. */

/* Testing whether data entry is finished */
if nrest = 0 then exit loop; /* exit for-loop */
n := nrest;

/* Computing the subscripts for the next step and entering data */
hashedValue[1 : n] :=

(hashedValue[1 : n] + (key[1 : n] & 31) + 1) mod size(table);
where table[hashedValue[1 : n]] = unentered do

table[hashedValue[1 : n]] := key[1 : n]; (2.4)
/* Enter the keys only where they are not yet entered. More  */
/* than one data item may be written into a hash table entry. */

end where;
end loop;

Figure 8. Vectorized algorithm for entering data into a hash table
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———————————————————————————————
input A[1 : n]: Array to sort {the element values should be in [0, Vmax)}.
output A[1 : n]: Sorted array.
———————————————————————————————
local C[0 : 3*n – 1];

for i in 0 .. size(C) – 1 loop C[i] := unentered;  end loop; /* Initialize C. */

/* Scatter the data into C: */
for i in 1 .. n loop
/* A. Computing a “hashed” value of A[i]. */

hashedValue := int(float(2 * size(C) * A[i]) / Vmax);

/* B. Finding the table entry to insert new data A[i]: */
while C[hashedValue] ≤ A[i] loop

hashedValue := hashedValue + 1;
end while;

/* C&D. Inserting new data and shifting the data in C: */
w := C[hashedValue];  C[hashedValue] := A[i];
while w ≠ unentered loop

hashedValue := hashedValue + 1;
x := C[hashedValue];  C[hashedValue] := w;  w := x;

end while;
end for;

/* F. Packing the sorted data into A. */
count := 0;
for i in 0 .. size(C) – 1 loop

if C[i] ≠ unentered then
count := count + 1;  A[count] := C[i];

end if;
end for;

Figure 11. Sequential algorithm of the address calculation sorting



20

———————————————————————————————————
input A[1 : n]: Array to sort {the element values should be in [0, Vmax)}.
output A[1 : n]: Sorted array.
———————————————————————————————————
local C[0 : 3*n – 1], uninsertable[1 : n], work[1 : n], entered[1 : n],

toShift[1 : n], index[1 : n], next[1 : n], nonempty[1 : n].

C[0 : size(C) – 1] := unentered; /* initialize C  (unentered = Vmax) */

/* A. Computing “hashed” values. */
hashedValue[1 : n] := int(float(2 * size(C) * A[i]) / Vmax);  nrest := n;

repeat
 /* B. Finding table entries to insert data. */

repeat
uninsertable[1 : nrest] := (C[hashedValue[1 : nrest]] ≤ A[1 : nrest]);

/* Check the first type of collision with stored data. */
/* If hashedValue[i] ≠ unentered, the right-hand side */
/* condition holds, i.e., there is a first type of collision. */

Nuninsertable := countTrue(uninsertable[1 : nrest]);
/* Count the number of uninsertable (colliding) data items. */

where uninsertable[1 : nrest] do
hashedValue[1 : nrest] := hashedValue[1 : nrest] + 1;

end where;
until Nuninsertable = 0; /* Repeat until there is no first type of collision. */

/* C. Inserting the data. */
work[1 : nrest] := C[hashedValue[1 : nrest]];

/* Save the original values of C to work. */
C[hashedValue[1 : nrest]] := –ι ;

/* Store the identifiers to check {–ι  is array (–1, –2, …, –nrest)}. */
/* An entry of C may be written twice or more (overwritten). */

entered[1 : nrest] := C[hashedValue[1 : nrest]] = –ι ;
/* Check the second type of collision between newly entered data items. */

where entered[1 : nrest] do
C[hashedValue[1 : nrest]] := A[1 : nrest]; /* enter */

end where;

/* D. Shifting the work array elements {only for successfully inserted data}. */
toShift[1 : nrest] := entered[1 : nrest] and (work[1 : nrest] ≠ unentered);
NtoShift := countTrue(toShift[1 : nrest]);
work[1 : NtoShift] := work[1 : nrest] where toShift[1 : nrest];
index[1 : NtoShift] := (hashedValue[1 : nrest] + 1) where toShift[1 : nrest];
while NtoShift > 0 do

next[1 : NtoShift] := C[index[1 : NtoShift]];
C[index[1 : NtoShift]] := work[1 : NtoShift];
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nonempty[1 : NtoShift] := (next[1 : NtoShift] ≤ unentered;
count  := countTrue(nonempty[1 : NtoShift]);
work[1 : count] := next[1 : NtoShift]

where nonempty[1 : NtoShift]; /* Pack work. */
index[1 : count] := index[1 : NtoShift] + 1

where nonempty[1 : NtoShift]; /* Pack index. */
NtoShift := count;

end while;

/* E. Collecting not yet inserted data for the next iteration. */
irest := countTrue(not entered);
hashedValue[1 : irest] := hashedValue[1 : nrest] where not entered[1 : nrest];
A[1 : irest] := A[1 : nrest] where not entered[1 : nrest];
nrest  := irest;

until nrest = 0; /* until all the data are inserted */

/* F. Packing the sorted data into A. */
A[1 : n] := C[0 : size(C) – 1] where (C[0 : size(C) – 1] ≠ unentered);

Figure 12. Vectorized algorithm of the address calculation sorting
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Table

Table 1.  CPU time and the acceleration ratio of O(N) sorting algorithms

Algorithm N S-810/20 CPU time (µs) Acceleration

Sequential Vectorized ratio
Address Calculation

Sorting*
26

210

214

289
4,286

66,955

110
560

5,215

2.62
7.65

12.84
Distribution

Counting Sort**
26

210

214

12,206
13,072
30,089

 1,522
1,738
5,667

8.02
7.52
5.31

* The size of work array C is 3n.
** The size of work array is 216, which is the range of the data.
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Footnotes
                                                

* This research was done at Central Research Laboratory, Hitachi Ltd.
1 The hardware must be capable of serializing vector operations, for FOL to be applied.  Most vector

processors and data-parallel processors have this function.
2 FOL is a generalization of the “overwrite-and-check” method in Kanada [8].
3 The concrete example shown in Section 4.1 may be helpful for understanding the principle of FOL.
4 This condition holds for multiple hashing as the order does not matter when there are no collisions.  If a

collision occurs, the order of the data entered in the hash table is dependent on which colliding data is stored, but

once again this is not important.  Processing not satisfying this condition is considered in a later footnote.
5 For example, the execution order may affect the order of entered data in the case of multiple hashing.  In

Figure 4 (a), 911 may be at the top of the chain, instead of 353.  However, this does not affect the correctness.
6 The most easily computable label for element v in vector V is the index or element number of v in V, or the

displacement of v (the number of bytes) from the top address of V.
7 There is a type of algorithm, which FOL should be applied to, in which the order of multiple processings for

one data item must be preserved.  It is possible to modify FOL1 so as to eliminate the above process condition

and to construct vectorized algorithms of such a type.  That is, if processing Pi is applied to data item di (= vi→d)

and processing Pj is applied to data item dj (= vj→d) where di and dj are equivalent (i.e., in the same storage

area), and the execution of Pi precedes that of Pj in the sequential execution, then the ELS condition can be re-

placed by a stronger condition so that the relation k > l holds for the output sets Sk and Sl,  where di ∈  Sk and dj ∈
Sl.

For vector processor S-3800, a higher-performance list-vector store instruction, the VIST (Vector Indirect

STore) instruction, which satisfies the ELS condition, can be used for writing labels in FOL1.  However, the

VSTX (Vector STore indeXed) instruction, which is slower but guarantees the order in which vector elements are

stored (a stronger condition than the ELS condition), can be used instead of the VIST to satisfy the above

relation, k > l, and to eliminate the above condition.
8 A deadlock may occur in Step 4.  A solution to this problem will be explained later.
9 The acceleration ratio means the ratio of the vectorized total execution time and the original sequential

execution time.
10 However, because the vectorized algorithm cannot be written in standard Fortran, the program violates its

semantics using the vectorization forcing option (*VOPTION).


