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Abstract: When manufacturing or 3D-printing a product using a computer, a program that procedurally
controls manufacturing machines or 3D printers is required. G-code is widely used for this purpose. G-
code was developed for controlling subtractive manufacturing (cutting work), and designers have historically
written programs in G-code, but, in recently developed environments, the designer describes a declarative
model by using computer-aided design (CAD), and the computer converts it to a G-code program. However,
because the process of additive manufacturing, of which FDM-type 3D-printing is a prominent example, is
more intuitive than subtractive manufacturing, it is sometimes advantageous for the designer to describe an
abstract procedural program for this purpose. This paper therefore proposes a method for generating G-code
by describing a Python program using a library for procedural 3D design and for printing by a 3D printer,
and it presents use cases. Although shapes printable by the method are restricted, this method can eliminate
layers and layer seams as well as support, which is necessary for conventional methods when an overhang
exists, and it enables seamless and aesthetic printing.

Keywords: 3D printing, Additive manufacturing, Declarative model, Declarative description, Procedural
description, 3D printer, G-code

1. Introduction

When a computer is used to process physical parts by ma-
chining, the machining procedure is usually described by a
language called G-code. 3D printing is a form of additive
manufacturing (AM), which is a type of machine processing
that requires a program for controlling manufacturing. For
this purpose, an assembly-language-like language called G-
code [17] was used. G-code is originally used for describing
the motion of blades of machine tools, so it is procedural.

Originally, programs written in G-code or APT, which is a
procedural language introduced in Section 2, were described
by the designer of physical parts. Today, however, the de-
signer describes a declarative model of parts by computer-
aided design (CAD). G-code was originally developed for
cutting work (or subtractive manufacturing, to use the cur-
rent term). A computer converted a model to procedural
G-code.

In cutting work, procedural design has been completely
replaced by declarative design, but the author suggests that,
in additive manufacturing, procedural design methods still
have advantages. Procedures of cutting work have many
constraints and are complicated, so a procedural descrip-
tion is not suited for describing cutting work. Moreover,
languages for describing it such as G-code are very low-
level and have no abstraction mechanisms, so it was difficult
to program machine work by using such languges. How-
ever, because AM, such as 3D printing, is more intuitive
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Fig. 1 Example of procedurally 3D-printed empty sphere (sur-
face and inside)

than subtractive manufacturing and because it may be dif-
ficult to print parts using declarative method, it is easier for
the designer to design shapes using abstract procedural de-
scription. For example, it is difficult to generate an empty
sphere, which is similar to the one shown in Figure 1, by
normal layer-by-layer 3D printing, because of the following
reason. Almost horizontal overhang of filament is required
when printing near the top of the sphere, so support inside
the sphere is inevitable, and it is difficult to make it empty.
However, using an intuitive and elaborate procedural de-
scription, a clean-shaped empty sphere can be printed. This
is similar to software development; that is, it is easier to
describe the intended behavior of the printer with a proce-
dural language than with a declarative language. In contrast
to machining, in software development, procedural methods
are still the mainstream.

This paper therefore presents a method for generating G-
code by a Python program that uses a library for 3D printing
and is procedurally abstracted, presents a method for print-
ing using a 3D printer, and demonstrates the use of this
method. The key aims of this paper are to describe the pro-
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posed method from the viewpoint of programming and to
position the method in the history of machining and in the
range of conventional methods. In Section 2, the history of
procedural cutting work, the basic method for 3D printing,
and the programming method for 3D printing are described.
The procedural 3D printing method using a Python library,
which was developed by the author, is described in Section 3,
and the experimental use of procedural 3D printing is intro-
duced in Section 4. Related work is briefly described in
Section 5, and Section 6 concludes the paper.

2. Conventional Cutting Work and Ad-

ditive Manufacturing

This section examines the value of procedural descrip-
tion in machining and describes practices of 3D printing.
First, the history of machining is reexamined, and second,
the 3D printing method and programming 3D printers are
described.

2.1 History of procedural cutting work

The technologies of cutting work using computerized nu-
merial control (CNC) and a programming language called
APT for CNC were developed from the 1940s to the 1950s.
The technology of numerical control was invented by John
T. Parsons in 1942, and based on this technology, the tech-
nology of CNC was developed at the Massachusetts Insti-
tute of Technology (MIT) [24]. For the control of cutting
work, a programming language called APT [1][20][7] was
developed at MIT, and it was used for programming cut-
ting work. Like an assembly language, APT is procedual.
Parsons used punch cards to record CNC programs, but
paper tapes were used at MIT for this purpose. MIT re-
searchers developed various subroutines and primitive pro-
cedural abstraction mechanisms such as macros or nested
definitions [20]. In the 1970s, the relationships between APT
and data abstraction or object-orientedness were discussed
[20].

However, after initial CAD technologies were developed,
designers of physical parts seldom ran machines using pro-
cedural methods. The designers described declarative mod-
els, and computers converted them to procedural programs.
Declarative methods were used probably because of the com-
plex nature of cutting work, which is not amenable to pro-
cedural description or the low-level and weak abstraction
functions of G-code and APT. Despite the various improve-
ments to APT, certain limitations, such as compatibility,
remained. It was likely difficult for designers to program
cutting machines using APT.

2.2 Conventional 3D printing and g-code

When using a 3D printer to shape a 3D object, a model
is typically designed by a 3D CAD tool and horizontally
sliced by a program called a slicer; the result is sent to a
3D printer, and it is printed. When using a CAD tool, the
model is usually procedurally designed using a graphical user
interface, but the model itself is declarative. For example,

Fig. 2 FDM-type 3D printers (FDM by “Zureks” by Zureks -
Wikimedia Commons)

a 3D design tool called OpenSCAD [23], which is a CAD
tool used for 3D printing, is unique because, in this environ-
ment, a model is described using a programming language;
however, this description is still declarative. The output file
formats varies among CAD tools, but a standard declara-
tive format called STL (Standard Triangulation Language
or Stereo-Lithography) [25] is used to send data to a slicer.
STL approximates the surface shape of models by a collec-
tion of triangles. It does not express the internal structure
of models.

There are many types of 3D printers. The cheapest type,
which is widely used (and used in this study), is called fused
deposition modeling (FDM). This type of printers extrudes
melted filament (plastic) from the nozzle and solidify it (Fig-
ure 2).

Conventional 3D printers basially print objects on a layer-
by-layer, but G-code itself is not constrained by the concept
of layer. The result of slicing is usually expressed by G-
code, and it specifies the behaviour of the print head, the
extrusion speed of plastic, and so on. 3D printers typically
print horizontally and layer by layer, so they do not usually
move the print heads vertically, except when transitioning
between layers. However, because G-code is not restricted
by the concept of layer, they do have the capacity to move
the heads much more freely.

Two examples of G-code commands are shown below.
First, a command named G0 specifies a simple tool (head)
motion. For example, command “G0 X1 Y2 Z3 F3600” de-
scribes a motion at the rate of 3600 mm/min to location
(1, 2, 3). Second, a command named G1 specifies cutting
and moving operations for a cutting machine and printing
and moving operations for a 3D printer. For example, com-
mand “G1 X1 Y2 Z3 F3600 E100” describes printing with
the extrusion amount of filament specified by “E100” while
moving to location (1, 2, 3). (The amount of filament is
specified by an absolute or relative value.) In both G0 and
G1, there are no constraints on direction of motion.

3. Development of Method for Procedu-

ral 3D Printing

A method of procedural 3D printing using Python as the
base language is proposed. In this section, the language and
the method for 3D printing using Python are described.
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3.1 Python-based description method

In contrast to cutting work, the machining process in ad-
ditive manufacturing is relatively intuitive, so it is useful
for the designer to describe the model procedurally, as ex-
plained in Section 1. Therefore, a Python library (appli-
cation programming interface (API)) is proposed for this
purpose. By using a procedural abstraction function (i.e.,
functions and methods), which is common in programming
languages, modular 3D printing, which cannot be described
by G-code, can be achieved.

Python is used for describing the library in stead of a lan-
guage conventionally used for machining, such as APT, for
the following reasons. APT was improved and updated to
have some abstraction functions, so it is not impossible to be
used for 3D printing. However, instead of extending APT,
it is probably better to use a languge such as Python as the
base for procedural 3D printing for two reasons. First, it is
considered more effective to employ a widely used language
based on modern syntax and semantics. Second, a modern
language such as Python has required language functions
such as procedural abstraction, so it is not necessary to ex-
tend the language but only to add a library. Many other
languages satisfy these conditions, but Python is selected
as the base language because it is more widely and inter-
nationally used than the alternatives. Because APT cannot
be executed by manufacturing machines, a file with an in-
termediate format called Cutter Location (CL) is obtained
when executing an APT program. In the same way, in the
proposed method, a G-code file is generated by executing a
program written in Python.

Two libraries for procedural 3D printing were developed.
They are draw3dp.py, which is used for 3D model generation
by assembling and deforming parts, and turtle.py, which
is used for model generation by 3D turtle graphics. The
latter (published in http://www.kanadas.com/program-
e/2014/08/a python library for 3d turtle.html) is a library
for 3D turtle graphics. The method for drawing graphics
by using turtle.py is close to that of LOGO [18], but it is
used for 3D printing. The coordinate used for this library
is turtle centered (i.e., similar to that used for a flight sim-
ulator), and the turtle creates the shapes of parts directly.
The location of the print head is always the zero point, and
its direction of motion is always forward [8][9].

In contrast, draw3dp.py (published in
http://www.kanadas.com/program-e/2014/10/
3d printing library for parts.html) is based on Carte-
sian coordinate. This feature is similar to its counterpart in
Processing [19], MetaPost [6], or Asymptote [22]. However,
there is an important difference between this library and
these languages. In the former, as described below, shapes
are generated by a procedural method, that is, the stacking
of directed strings (lines), which is 3D-printing oriented. In
this library, an object surface is thus generated by stacking
strings. In contrast, in the latter, surfaces are a primitive
and lines have no direction. The programming languge
available in OpenSCAD [23] is designed according to the

same principle. In draw3dp.py, a shape can therefore be
directly mapped to a 3D-prining procedure, but in the
languages listed above, including OpenSCAD, it cannot be
directly mapped to a 3D-printing procedure. Therefore, in
the case of OpenSCAD, as in other CAD tools, to enable
printing models, a program called a slicer, which converts
a model to a printable form, is required. Printing fails
when the slicer works in a manner that diverges from the
intention of the model designer, as in the case of the empty
sphere described in the introduction. In contrast, the
printer works according to the designer’s intention when
using draw3dp.py.

Figure 3 summarizes the APIs included in draw3dp.py.
The APIs for assembling parts (2D and 3D shape genera-
tion) [10] are explained in Section 3.3, and the APIs for de-
forming parts [12] are explained in Section 3.4. The API for
modulating parts (part surfaces) is explained in Section 3.5.

3.2 Part representation and generation

3D printers, including the FDM-type, stack strings of ma-
terials (these strings are called “filaments” in FDM). In
draw3dp.py, a part is thus represented by a sequence of
strings Si, (S1, S2, ..., Sn) [12].

Si = (Pstarti, P endi, ci, vi)

In this expression, Pstarti denotes the start point and
Pendi denotes the end point of the string. (They are as-
sumed to be connected by a straight line.) Moreover, ci

denotes the cross section of the string (which can be re-
placed by a parameter of filament density), and vi denotes
the printing speed (mm/sec), that is, the velocity of the
head motion. Although vi is conceptually unnecessary, it is
practically convenient. A sequence of strings represents an
object (model), and it depends on the procedural genera-
tion of the object. Each string and a sequence of strings can
be regarded as programs. These programs are converted to
G-code before executing them.

In this representation, the direction of the filament in each
location inside the part is specified. If the part is thick, not
only the surface shape but also the structure and density
of the filament in each internal location of the part can be
specified. These parameters cannot be described by con-
ventional CAD models or STL. The original purpose of the
string-based representation presented above is to utilize the
direction of the filament in 3D prinitng for expressions of
objects (e.g., for an aesthetic purpose) [10][12].

Parts are treated as objects (in the sense of object-
oriented design), and the class name for parts is Trace. For
this purpose, first, the constructor, draw3dp.Trace, is used
to generate an empty part. (See Figure 3, which also illus-
trates the methods described below.)

In the current version, the library contains a limited num-
ber of simple parts, such as circle, spiral, and helix; however,
shapes that are not combinations of these shapes can also
be described using low-level methods such as line genera-
tion. Programs that represents abstract high-level parts but
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• Constructor: part = draw3dp.Trace(crossSection, x, y, z)

Generate an empty part and specify the start point (current

location) and the cross section.

• Low-level functions

– Motion: part.move(x, y, z)

Move linearly from the current location to (x, y, z), which is

the next location to extrude filament.

– Line generation: part.draw(x, y, z)

Generate a string and add it to the part while moving linearly

to (x, y, z).

– String cross section configuration: part.setCrossSection(c)

or part.thickness(c)

Set the cross section of the string used for part to c from now

on.

– Print speed configuration: part.setVelocity(v) or

part.speed(v)

Set the print speed of the part to v from now on.

• Two-dimensional part generation (parts assembly)

– Circle generation: part.circle(r, x, y, z)

Add a circle with center location (x, y, z) and radius r to

the part.

– Spiral generation: part.spiral(r, hpitch, x, y, z)

Add a spiral with center (x, y, z) and radius r to the part.

(hpitch is the horizontal pitch of the string).

• Three-dimensional part generation (parts assembly)

– Helix generation: part.helix(r, h, vpitch, x, y, z)

Add a helix with center (x, y, z), radius r, and height h to

part (vpitch is the vertical pitch of the string).

– Cylinder generation: part.cylinder(r, h, vpitch, hpitch, x, y,

z)

Add a filled cylinder with center (x, y, z), radius r, and

height h to the part (vpitch and hpitch are vertical and hor-

izontal pitch).

• Part deformation

– Deformation by Cartesian coordinates: part.deform xyz(fd,

fc, fv)

Map the Cartesian coordinates of part before and after the

deformation by function fd, and convert the cross section by

function fc and printing speed by function fv.

– Deformation by cylinder coordinates:

part.deform cylinder(fd, fc, fv)

Map the cylinder coordinates of part before and after the

deformation by function fd, and convert the cross section by

function fc and printing speed by function fv.

• Modulation of part (surface)

– Modulation by cylinder coordinates:

part.modulate cylinder(fm)

Modulate part by function fm (generate texture on the part

surface).

• G-code generation: part.draw()

Generate G-code to print part (finalize the part).

Fig. 3 Major APIs of procedural 3D printing

(a) Spiral (b) Helix

Fig. 4 Spiral and helix

that cannot be described by high-level library functions or
methods can be described using low-level library functions
in the same way as conventional procedural programs.

High-level parts were gradually added to the library. The
addition is intended to extend the library by adding use-
ful parts. However, in the current version, because shapes
such as arcs are not supported, the programmer (designer)
must describe them using the low-level APIs. Available low-
level methods include draw, which draws a straight line to
the specified location (which corresponds to G1), and move,
which moves the head to the specified location without ex-
truding filament (which corresponds to G0). The cross sec-
tion of a string and the printing speed should also be con-
trolled by using low-level methods.

The library includes a method called circle, which can
draw a circle easily. Because a string is a line, a circle is ap-
proximated by lines. Because 3D printers cannot typically
draw exact arcs, this approximated shape represents both
a limitation of string-based expression and a limitation of
current 3D printers. The number of strings that forms a
circle can also be given by a parameter. However, if a circle
consists of many and excessively short strings, the printing
speed becomes lower than specified, and the printing work
may stop or become unstable.

The library also includes a method called spiral, accord-
ing to which single spiral can be drawn (See Figure 4(a)).
A more complicated part generation method, helix, is also
included in the library. This method generates unnested he-
lix, that is, an empty cylinder without a bottom. It can
generate a thin cylinder of any height, with no layers and
hence no seams between layers.

In contrast to a single cylider generated by method he-

lix, method cylinder generates a filled cylinder. However,
seams cannot be avoided completely when printing a filled
cylinder.

All the methods explained above prints objects helically
or spirally from the bottom to the top. By printing heli-
cally, new filament can be supported by the filament below,
which can eliminate the inter-layer seams which are often
generated by 3D printing [13]. Printing a helix (or a spiral)
is, therefore, considered to be the most important function
in procedural 3D printing.

3.3 Parts assembly

When creating a product or a prototype using machine
processing, the normal process is to generate the parts first
and then to assemble them. In subtractive manufacturing,
parts are assembled after the cutting process; however, when
using AM, multiple parts are often generated at once. In-
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Fig. 5 Olympic symbol printed as a collection of splitted and
assembled rings

stead of printing part by part, all preassembled parts are
printed concurrently. Such combinations are enabled by con-
ventional 3D design and printing methods. The proposed
library may also be used for printing assembled parts, al-
though there are currently many limitations on the combi-
nations.

When using the proposed library, if the parts satisfy the
following two conditions, they can be assembled by printing
them sequentially.
• The print head is not disturbed by previously printed

filaments.
• Printed filaments are supported by the print bed or pre-

viously printed filament.
Note that the processes for testing these conditions are not
yet automated.

If the above conditions cannot be satisfied even by chang-
ing the printing order, the conditions are to be tested
whether they are satisfied or not by dividing a part and
the printing order [10]. For example, a chain of rings cannot
be printed procedurally unless the rings are divided. Thus,
in a previous paper [10], a 3D-shaped (chained) Olympic
symbol was attempted by dividing the ring manually (be-
cause not yet automated) (Figure 5). However, because an
Olympic symbol cannot be represented by a combination of
parts introduced in Section 3.2, specialized parts (generation
functions) were required. In addition, this Olympic symbol
had to be printed without contact with the print bed, so
support material was required.

By introducing functions with part-assembly procedures,
the functions will become generation functions of complex
parts. They represent procedurally abstracted modular
structures (of programs and printed parts).

3.4 Deformation of objects

In the library draw3dp.py, a part generated by 3D- or 2D-
generation functions can be deformed before it is printed.
Deformation is introduced because only a limited number
of simple shapes are manually registered in this library,
and thus it is difficult to generate various shapes through
assembly alone. If a part or a combination of parts can
be freely deformed, especially by applying nonlinear trans-
formations, various shapes can be relatively easily created.
In conventional CAD tools, linear transformations such as
translation, rotation, enlargement, and reduction, can be
applied to models. The OpenSCAD lauguage, which was
mentioned in Section 3.1, can also apply these transforma-
tions. However, they can be applied only to declaratively
defined parts. In contrast, in draw3dp.py, procedurally de-

fined parts, which are defined as a sequence of strings, can
be deformed. Because a part can be regarded as a program
as described before, this deformation can be regarded as a
program transfomation. In computer graphics, a freer defor-
mation is important [21][2], but deformations operate only
on declaratively defined shapes. Deformation operation not
only has the ability to create various shapes, but can also
preserve 3D-printable [12] parts, and the printability can be
preserved by using these parts.

In draw3dp.py, two methods, deform xyz and de-

form cylinder, are supplied for deformation, and method
draw is used for fixing the shape of the part (to generate G-
code) (see Figure 3). Two of the deformation methods have
the same function; however, both methods are prepared in
order to facilitate the used of Cartesian coordinates in some
cases and the use of cylinder coordinates in others [12].

Method part.deform xyz(fd, fc, fv) deforms part based on
Cartesian coordinates. Function fd(x, y, z) (the first argu-
ment) maps a location (x, y, z) before the deformation to
a location after the deformation. Function fd, thus, returns
three values. Function fc(c, x, y, z) (the second argument)
maps a cross section c before the deformation to a cross
section after the deformation. Function fv(v, x, y, z) (the
third argument) maps a printing speed (head-motion speed)
v to a printing speed after the deformation. Because there is
currently no way to preserve 3D printability automatically,
the part designer must define appropriate functions fc and
fv to preserve it.

Method part.deform cylinder(fd, fc, fv) deforms part ac-
cording to the cylinder coordinates. The function of this
method is the same as deform xyz, with the exception that
the coordinates are different. Most of the currently defined
parts are printed helically, so this method, which is based
on cylinder coordinates, is more useful than that based on
Cartesian coordinates.

These deformation methods transform the coordinates of
the start and end points of strings. These transformations
map straight lines, that is, strings, to straight lines, so the
errors of midpoints of the strings vary. To preserve printabi-
ity, the transformation function should be continuous, and
enlargement and reduction should be suppressed by these
transformations because enlargement or reduction causes er-
rors, which may spoil printability (i.e., disable printing).

Examples of deformation are shown in Figures 6 and 7. A
3D-printing tool called Repetier Host was used to visualize
the models in these figures.

Figure 6 shows a cup, which consists of a helix and thin
cylinder (bottom), and a shape that is a deformation of the
cup. The cup in Figure 6(a) becomes the plate shown in
Figure 6(b) by applying the following deformation:

deform cylinder(fdd, fcd, fvd),
where fdd(r, θ, z) = (r + 1.05z, θ, 0.3z),
fcd(c, r, θ, z) = 0.96 c, and fvd(v, r, θ, z) = v.

Note that the size of the deformed bottom must fit the
shape, that is, deformed helix.

Figure 7 shows a helix and a sphere; the latter is generated
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(a) Cup before deformation

(b) Plate after deformation

Fig. 6 Example of deformation from a cup

(a) Helix before deformation (b) Sphere after deromation

Fig. 7 Example of deformation from helix

by deforming the helix. Figure 7(a) shows the original helix,
from which the sphere shown in Figure 7(b) is obtained by
deformation. This deformation is based on the following ex-
pression, where the pitch of the filament is preserved (that
is, this transformation does not enlarge or reduce the helix
vertically, but it just twist around a sphere).

deform cylinder(fds, fcs, fvs),
where fds(r, θ, z) = (Radius * sin(π z/cylinderHeight),

θ, r ― Radius * cos(π z/cylinderHeight)),
fcs(c, r, θ, z) = 1.2 c, and
fvs(v, r, θ, z) = 1.2 * ((fr(r, θ, z)/Radius)**2 + 0.1) v,

where parameter cylinderHeight denotes the height of the
helix before the deformation, and the length is equal to the
half of the meridian length after the transformation. Several
other examples were shown in a previous paper [12].

3.5 Texture map by modulation of printing

The proposed 3D-printing method can be relatively eas-
ily extended by drawing (mapping) characters, images, or
textures on the surface of objects to be printed by control-
ling the printing process. This method generates asperity by
changing the cross section of filament [14]. An application of
this method is called modulation of printing [14]. Although
changing the cross section while printing cannot generate

Fig. 8 Binary-valued bitmapped map

deep asperity, it can generate shallow asperity.
There are two ways to change the cross section of filament.
• Changing the extrusion speed of filament.
• Changing the motion speed of the print head.

The first way is more direct; however, the second way is
used in the present study because it has better responsive-
ness. Concerning 3D printers, delay of extrusion, that is, the
time from motion change of the extruder, which extrudes the
filament, to the change of filament extrusion, is lengthy. It
may be several seconds. The first method is thus limited
by slow responsiveness. Although the print head of a 3D
printer has a high level of inertia, it responds much more
quickly to a motion-speed change. The second method is
thus suited for generating shallow asperity. The proposed
library thus uses this method. Method modulate cylinder is
defined for modulation (See Figure 3).

The example of modulation by a map is described below.
If a plain surface is modulated by a map, the map is
printed as is. In contrast, if a sphere is modulated, a
globe can be printed. Figure 8 shows a binary-valued
world map generated from a world map by equidis-
tant cylindrical projection based on data from NASA,
which can be obtained from the Celsia Motherload
(http://www.celestiamotherlode.net/catalog/earth.php).
This site contains various maps with various processing
and various bitmap sizes. The size of the map shown in
Figure 8 is 300 × 150. Therefore, each dot in a bitmap
should be mapped to an area with 1.2◦ of longitude and
1.2◦ of latitude. Each circle of the globe should consist of
300 strings; a sphere is generated with 150 circles, and each
dot on the map is mapped to a string on the globe. That
is, the printing speed of each part of the string is selected
from two values.

3.6 Program example

Because it may be difficult to grasp the entire model gen-
eration and printing process, the process is explained using
the program below, which prints a sphere. After this pro-
gram configures constants and parameters, it calls method
init for overall initialization (but especially for initialization
of the 3D printer). The program prints a so-called “skirt”.
A skirt is extra filament around the printing area, which is
generated before the part is printed. It is printed for the sake
of stabilizing the state of the print head and filament. The
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import draw3dp
from math import sin, cos
## Constant ##
PI = 3.14159265359
## Printer parameters ##
IsABS = False # Using PLA as the material
DefaultVelocity = 40 # mm/sec
## Printing parameters ##
x0 = 0; y0 = 0; z0 = 0.4
## Extrusion parameters ##
defaultCrossSection = 0.196 # mm2 (Radius 0.5 mm)
FilamentDiameter = 1.75 # mm (Normally 1.75 mm or 3 mm)
## Temperature patameters ##
if IsABS:

HeadTemperature = 235
# ABS requires slightly highter temperature

BedTemperature = 90 # ABS requieres heating printbed
else: # PLA

HeadTemperature = 220
BedTemperature = 35

# Close to room temperature for PLA

## Initialize ##
draw3dp.init(FilamentDiameter, HeadTemperature,

BedTemperature, DefaultVelocity)
## Generate and print skirt ##
sk = draw3dp.Trace(defaultCrossSection, 0, 0, 0.4)
skirt2(sk) # Definition if skirt2 is omitted
sk.draw(0.4)

## Generate object to be printed ##
obj = draw3dp.Trace(defaultCrossSection, x0, y0, 0.4)
radius = 25.0
helixHeight = PI/2 * radius
rmax = 30.0
vpitch = 0.2; x0 = 0; y0 = 0; z0 = 0.4
obj.setVelocity(36) # Initial printing speed configuration
obj.helix(radius, helixHeight, vpitch, x0, y0, 0)

# Generate helix
obj.deform cylinder(

lambda r, theta, z:
(radius * sin(PI*z/helixHeight), theta,
r - radius * cos(PI*z/helixHeight)),

lambda v, r, theta, z: v,
lambda c, r, theta, z:

0.35 * ((0.5 * r + radius) / radius) * c) # Deformation 1
obj.deform cylinder(

lambda r, theta, z: (r, theta, z + z0),
lambda v, r, theta, z: 0.6 * ((r/radius)**1.5 + 0.2) * v,
lambda c, r, theta, z: 2.0 * c) # Deformation 2

## Print ##
obj.draw()

Fig. 9 Program for printing empty sphere

(a) Four-cycle plate (b) Three-cycle plate

(c) Heart-shaped plate

(d) Vase

Fig. 10 Plates and pods

part to be printed is named “obj”. “Obj” is initially empty
but becomes a helix (by the addition of strings that form a
helix by method helix), and it is deformed to a sphere by ap-
plying method deform cyliner twice. The main deformation
is performed by the first application, but it is slightly moved
to z direction and the printing speed and filament-extrusion
speed are adjusted by the second application. Finally, the
strings are converted to G-code using method draw.

4. Practice of Procedural 3D Printing

By using the method described in the previous sec-
tion, small plates, pods, spheres, and globes, which
can be printed in 10 to 20 minutes, were manufac-
tured. Although the products shown in this sec-
tion are not intended for real-world use, readers can
obtain all of these samples (http://bit.ly/1EZ4SZI or
http://store.shopping.yahoo.co.jp/dasyn/)．

4.1 Plates and pods generated from cup

Plates and pods with various shapes generated using the
method described in Section 3.4 are shown in Figure 10. Fig-
ures 10(a) and (b) show plates [3], which are deformed from a
helix as shown in Figure 6(b). Even when winding filaments
mostly horizontally, no support material, which may make
the printed object cloudy, is required. Figures 10(a) shows a

7
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Fig. 11 Sphere and deformed sphere

four-cycle plate (i.e., with four trigonometric-function-based
cyclic motions), and Figures 10(b) shows a three-cycle plate.
Both specify a trigonometric function in function fd, which
is an argument of method deform cylinder. Because the an-
gle of plate surface and filament density varies from location
to location, the reflection of light also varies [12]. Such reflec-
tion or brightness is generated using pure and transparent
polylactic acid (PLA) and by eliminating support material.
No such reflection is generated by colored plastics.

Figure 10(c) shows a plate generated by using a transfor-
mation from a circular helix to a heart-shaped helix [4]. The
following function, which converts a circle to a heart shape,
is used.

fdh(x, y, z) = (x + b z sqrt(abs(y) / radius), y, z)
This shape is based on the equation of a heart-shaped

curve [26]. An appropriate range of b is 0−1.2. This trans-
formation becomes an identity function if b z = 0 holds,
and it generates a sharper heart shape if the value of b − z

becomes large. The helix is deformed using this function
and deform xyz. The shape of the horizontal cross section
is a circle at the bottom, and it becomes sharper toward the
top because the value of b − z increases monotonically. By
changing the maximum value of b, the various shapes shown
in Figure 10(c) are generated. Moreover, as Figure 10(c)
shows, the gradient and reflection of plate parts are varied
by adding small verticall oscillations using a trigonomet-
ric function. Figure 10(d) shows two types of vases. The
left vase [14] is generated by radius-direction and vertical-
direction deformations using trigonometric functions. The
right vase is generated by twisting the same heart-shaped
helix (that is, the direction of the heart changes according
to the height).

4.2 Helix-based spheres and other objects

As explained in Section 3.4, a sphere can be generated by
deforming a helix. The left photo in Figure 11 shows a sim-
ple sphere generated by this method. Because it is not pos-
sible to support it at single point (i.e., the south pole) when
printing it, a special technique for support is required. How-
ever, no support in the conventional meaning is used [12].
The right photo in Figure 11 shows an object generated by
further deforming a sphere using a trigonometric function
in the same way for the objects shown in Figures 10(a) and
(b).

Fig. 12 Modulated sphere (globe) and bowl

Fig. 13 Shade for small lamp

Figure 12 shows objects generated with the modulation
technique that uses a bitmap, which is described in Sec-
tion 3.5. The left photo shows a globe [5], which was gener-
ated by modulating a sphere by a map. The whole sphere is
illuminated by only one LED placed below the sphere [15].
The right photo shows a half-sphere-shaped bowl (more pre-
cisely, a half sphere and a stand) modulated by alphabets.
(This bowl was printed upside down.)

When printing a globe, the printing speed of each string
is selected from two alternative values. The printing may
fail if the ratio of the cross sections of sea and land is too
large. An appropriate ratio is 1 to 0.6 or 1 to 0.7.

As described above, when using a bitmap of 300 × 150,
each string cycle is divided into 300 short strings. However,
near the poles, the strings are too short, so the number of
strings is reduced. It is possible for reducing them when
generating the globe model, but, because method draw has
a function to reduce the number of connected short strings,
the model representation does not to be changed.

Figure 13 shows small shades [11] for LED bulbs gener-
ated from a helix. The left photo shows a shape generated
by deforming a partial sphere using trigonometric functions.
The right photo shows a shape generated by modulating the
same partial sphere using trigonometric functions. Most of
the materials for FDM-type 3D printing become weak in the
presense of heat, so they are not suited for filament lamps;
however, even PLA can be used for LED shades because
LEDs generate less heat. These shades are largest of the
objects shown in this section (but their diameter is about
100 mm), but the printing time is around 20 minutes. The
printing time is shorter than in conventional 3D printing
because the shades are thin (the filament is unnested), but
their relatively strong intensity protects them from beging
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easily broken even if dropped. (This is is the case for other
objects as well.)

5. Related Work

The proposed method is characterized by modeling ob-
jects to be 3D printed using a combination of procedural
parts, which are printed helically or spirally. In the ex-
amples shown in the previous section, filament is stacked
seamlessly and in an aesthetically pleasing manner. Klein,
et al. [16] established a method for the helical 3D printing
of transparent glass. The objects printed according to this
method are seamless and aesthetically pleasing. The pho-
tos in their paper shows aesthetic effects of light reflection
and refraction. However, they did not mention the design
method used for their work.

6. Conclusion

Current design methods for 3D printing are declarative,
and procedural description by designers has not been suc-
ceeded in cutting work. However, the author suggests that
procedural description is advantageous in additive manufac-
turing. Thus, libraries for procedural 3D printing are de-
veloped, as is a method for 3D printing, in which G-code
programs are generated by this method and procedurally
abstacted Python programs. Although printable shapes are
restricted when using this method, layers and layer seams
can be eliminated, as can the support materials required
for conventional methods eliminated, and seamless and aes-
thetically pleasing printing is enabled by this method. The
author intends to disseminate this method and the library
through this paper.
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