3D Printing and Simulation of Naturally-Randomized Cellular-Automata

Yasusi Kanada Dasyn.com

Introduction

- ➤ **3D printing** (or Additive manufacturing)
 - 3D objects are generated layer by layer.
 - Cheap FDM 3D printers are widely used. (FDM means fused deposition modeling)
- **▶** 3D printers can generate fluctuated, emergent, and stochastic patterns.
 - Printing conditions and process including nozzle temperature, extrusion process, air motion, etc., are fluctuated.
 - Printing processes contains bifurcations.
- **▶** 3D printing can be interpreted as asynchronous CA (cellular automata).
 - A printing head generates 1D on/off patterns.
 - Fluctuated patterns are similar to patterns generated by stochastic CA.

Methods for 1D and 2D CA pattern generation

► A 1D CA pattern is generated by a helical head motion.

► A 2D CA patterns can be generated by spiral and helical motion.

ISAROB 2014 2014-1-22

Yasusi Kanada, Dasyn.com

Examples of 1D printed patterns

ISAROB 2014 2014-1-22

Yasusi Kanada, Dasyn.com

More 1D patterns

ISAROB 2014 2014-1-22

Yasusi Kanada, Dasyn.com

Printing process

Examples of 2D CA patterns

Simulation

- ➤ A computational model that simulates printed 1D patterns was developed.
 - A pattern is generated by using a probabilistic rule.
 - Explicit randomization was (random numbers were) introduced.

Simulation results

- ► The printed patterns were roughly simulated.
- ► Simulation of detailed structures has not yet been succeeded.

Conclusion

▶ Proposals

- A method for printing patterns of 1D (and 2D) CA using FDM was proposed.
- A computational model of these automata was also proposed.

▶ Results

- Various printing results were shown.
- The basic structure was simulated, but simulation of detailed structures has not yet been succeeded.