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1. Introduction 

Constraint satisfaction problems (CSP) have often been
solved experimentally using symmetrically-connected
neural networks.  The problems are translated to maxi-
mum descent or hill-climbing of a function defined using
the number of satisfied constraints [Min 92].  Ackley,
Hinton, and Sejnowski [Ack 85] solved CSP using
Boltzmann Machines.  Takefuji [Tak 92] solved many
CSP using improved Hopfield networks and other types
of networks.  Nakamura, Wakutsu, and Aiyoshi [Nak 94]
solved map coloring problems and traveling salesperson
problems using improved symmetrically-connected net-
works with discrete output values.

The difficulties of the above methods are as follows.
Firstly, local maxima cannot be avoided and, thus, it fails
to find a solution in some of the above methods, such as
Hopfield networks.  This difficulty does not exist in
Boltzmann Machine and other annealed methods, of
course.  Secondly, the above methods take too much
computation time on conventional computers.  For ex-
ample, Hopfield networks take much time because they
require many iterations and costly floating-point function
calculation.  Boltzmann Machines require very many
iterations because it requires slow temperature decrease.
These difficulties make solving large-scale CSP almost
impossible.  There are several other difficulties in the
methods using conventional annealing techniques.
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These difficulties are explained in detail in the next sec-
tion.

To overcome these difficulties, a symmetrically-
connected network with discrete output and with an an-
nealing technique called the frustration accumulation
method (FAM) [Kan 94b] is proposed in the present pa-
per.  This method is called DSN-FAM (discrete symmet-
ric network with FAM).  DSN-FAM is a method for
CSP.  FAM has been developed as an annealing tech-
nique for solving CSP using the chemical casting model
(CCM) [Kan 94a].  CCM is a symbolic model for emer-
gent computation and has been applied to several con-
straint satisfaction and optimization problems.  This
method is called CCM-FAM.  However, FAM can also
be applicable to neural networks, and it is also advanta-
geous.  Local maxima can be avoided using FAM with-
out loosing the efficiency of DSN, the original method.

Several annealing techniques including simulated an-
nealing are surveyed in Section 2.  The method of solv-
ing CSP using DSN-FAM is explained in Section 3.
This method is applied to map or graph coloring prob-
lems in Section 4.  The results of performance evaluation
of both sequential and parallel processing are shown in
Section 5.  Finally, the conclusion is given in Section 6.

2. Annealing Techniques
In the present paper, “Annealing techniques” means
techniques for escaping from local optima using ran-
domization.  There are several types of annealing tech-
niques for optimization problems.  Simulated annealing
(SA) and Boltzmann Machines, which are among them,
are mentioned here.
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SA [Kir 83] is a method for function optimizations.
The function to be optimized, f(x), is usually a global
function that is defined to whole system, such as global
energy.  The value of function f is a scalar, and the value
of parameter x is usually numerical (i.e., a scalar or vec-
tor).  Global parameter T, which is called temperature, is
used in SA.  Random noise, which is a monotonically
increasing function of T, is added to x and T is gradually
decreased to 0 while searching a solution, so that falling
into a local optimum is avoided.  Because SA is a
method for global function optimization, SA, in its origi-
nal form, does not fit for local-information-based
method, such as neural networks or CCM [Kan 94a],
which is briefly mentioned later. Temperature in SA is
time-dependent and externally controlled.  Thus, the
problem-solving system does not autonomously work
again in an expected way after it converges to a solution,
even if the input to the system is changed so that the op-
timality gets worse.

The annealing technique in Boltzmann Machines is
also called SA.  However, random noise is added to each
neuron independently in Boltzmann Machines.  This
means that SA in Boltzmann Machines works locally to
each neuron.  Thus, the nature of this method is different
from normal SA, which optimizes a global function di-
rectly.  However, temperature in Boltzmann Machines is
still a global parameter and externally controlled.

Kanada [Kan 94b] developed a new annealing tech-
nique called FAM .  This technique has been developed
for avoiding local optima in CCM-based problem solv-
ing.  There are two reasons why a new annealing tech-
nique was developed.

Firstly, the annealing technique used with CCM
should be based only on local information, but the above
techniques are not.  In this context, that the computation
is based on local-information means that the number of
data used for a unit of computation is small and that the
units of computation are autonomous or basically inde-
pendent each other.  CCM is a symbolic model for emer-
gent computation [For 91].  Emergent computation is
local-information-based computation.  The value of
global objective function is not computed even when
CCM is applied to global optimization.  The global
function is expressed as a summation of functions, which
are computed only using local information, and the
global function is eventually optimized through the op-
timization of the local functions.  Thus, global function
based method cannot be applied to CCM.

Secondly, SA and similar techniques are inefficient.
A local SA technique, which is similar to that used in
Boltzmann Machines, has been developed for CCM-
based problem solving [Kan 96], but it is also inefficient.
More efficient technique is required for solving large-
scale problems in a reasonable time.

3. Symmetrically-connected Networks with
FAM

A method of solving CSP using a neural network with
FAM is proposed in the present section.  This method is
called DSN-FAM, where DSN means discrete symmetric
network, in the present paper.

The neurons used in this method are McCulloch-Pitts
type, i.e., the output is discrete and time is also discrete,
and they are mutually connected and symmetric.  The
input-output function of neuron i is as follows:
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where xj ( j = 1, 2, …, n) is the current output of neuron
j,  xj’ is its output of the next time step, and wji is the
connection weight between neurons j and i (wji = wij ).
The connection weights are invariant.  α  is a constant if
FAM is not used, but it is varied by FAM.  Function
threshold is defined as follows:

threshold(x)  = 0 if x < c,
1 if x ≥ c,

where c is a constant.
The problem to be solved must be described as a

collection of local constraints.  If there are global con-
straints, this method cannot be applied.  The local con-
straints must be expressed as constraints among the input
values of a neuron.  For example, that the sum of outputs
of several specific neurons that are connected to a certain
neuron is 1 may be the constraint.  This constraint means
that exactly one of these neurons is active and others are
inactive.

FAM is a technique for escaping from “local
maxima.”  In this technique, each neuron has a type of
energy called a frustration, whose value is positive.  If
frustration is larger, α  is varied so that the state of the
neuron can more easily be changed.  The frustration of
neuron i is noted by fi .  If the current state is 0, then

α = a + b fi ,

where a and b are constants and  b > 0.  If the current
state is 1, then

α = a – b fi .

Each neuron initially has a certain level of frustration,
f0 , which is, for example, 10–10.  The frustration is in-
creased, when the application of a reaction rule fails but
there are unsatisfied constraints.  This means that the
frustration of a neuron is increased when the following
three conditions hold.
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1. The neuron is tested for a possible state transition, i.e.,
a possible state change from inactive to active state, or
vice versa.

2. The state transition does not occur.  (The output of the
neuron is not changed.)

3. There are constraints, relating to the neuron that are
not or will not be fully satisfied.

Because of the third condition, FAM is a method appli-
cable only to CSP without global constraints.

A value of frustration,  fi ,  is replaced by c fi , where c
(> 1) is a constant.  This means that

fi’ = c fi ,

where fi’ is the frustration at the next time step.  The
value of c is 2, for example.  If a state transition occurs,
the frustration of the neuron is reset to f0 even when the
constraints are not satisfied.

The order of state transition tests can be sequential
(asynchronous) or parallel, and can be deterministic or
randomized.  Sequential and randomized order is used
throughout the present paper.  An algorithm of network
state transition can be described as follows.

repeat
Select a neuron randomly;
Test the neuron, and change the state if it is necessary;
if a state transition occurred then1

fi  :=  f0 ; /* reset to the initial value */
else if not all the constraints are satisfied then

fi  := c fi ; /* increased */
end if

until no more state transition can occur;

The network works qualitatively as follows.  The av-
erage frustration increases rapidly when there are con-
straints that are difficult to be satisfied.  This high
frustration state corresponds to high temperature state in
SA.  If the values of parameters, f0 and c, has been se-
lected appropriately, the number of violations of con-
straints decreases, and the average frustration thus
decreases.  This frustration decrease corresponds to tem-
perature decrease in SA, but the decrease occurs

                                                                        
1 In this vertion of the algorithm, the frustration of a neuron is
not reset to f0 when the constraints are satisfied by an activation
of another neuron even if the neuron is tested after the satisfac-
tion.  This statement can be modified as follows:

if a state transition occurred or
    all the constraints are satisfied then

fi  :=  f0 ;
else fi  := c fi ;
end if

Then, the frustration is reset when the neuron is tested after the
constraints are satisfied.  This version also works.  However,
the parameter tuning seems to be more difficult.

autonomously.  No external control is required.  If all the
constraints are satisfied and all the frustrations become
low enough, no state transition occurs anymore.  Then
the execution stops.2

Two sample time sequences of average frustration is
shown in Figure 1.  The problem used is the USA
mainland map coloring, which is explained in the next
section.  The horizontal axis shows the number of state
transitions since the network begins to operate, and the
vertical axis shows the average frustration.  The stars in
the upper part of the graph show the state transitions
caused by frustration accumulation.  (Their vertical co-
ordinate has no meaning.)  A solution was found by 118
state transitions in a trial, and by 274 state transitions in
the other trial.  Average frustration sometimes increases
rapidly and this causes a state transition.  Then, the frus-
tration decreased rapidly.3  Average frustration some-
times decreases without a state transition caused by a
frustration accumulation.
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Figure 1.  Two sample sequences of average frustra-
tion

Parameters,  f0 and c, are constant during the execu-
tion, and they are considered to be properties of each
neuron or each type of neurons.  Thus, this method
works only with local information if each neuron is con-

                                                                        
2 The termination condition in the algorithm is replaced by
“false.” This means that the network operates forever. Then, the
network once stops changing its state but begins changing its
state again when the state of a neuron is changed or new con-
straints are added externally.  Thus, a dynamic problem or
open-ended problem can be solved without an additional
mechanism in this method.
3 The frustration of the neurons, in which all the constraints are
satisfied, are regarded to be the initial value, although the actual
values stored are larger in this measurement.
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nected only to near neurons, and there are no global pa-
rameters, such as temperature, used in simulated an-
nealing.  Both f0 and c are constant for all the vertices in
our implementation.

Frustrations may be increased additively instead of
multiplicatively as above.  That means, the frustration,
fi , may be replaced by fi + k when fi is to be increased,
i.e., fi’ = fi + k, where k (> 0) is a constant.1  However, if
the frustration increase is additive, the appropriate range
of parameters, f0 and c, will become narrower.  The ad-
ditive frustration is explained more in the case of CCM-
FAM by Kanada [Kan 96].

4. Application to Coloring Problems
DSN-FAM is applied to map/graph coloring problems in
the present section.

The problem is how to color the vertices of a graph
using a specified number of colors, for example, four.
Each pair of neighboring vertices must be given different
colors.  A map coloring problem can be converted to a
graph coloring problem, if areas of the map are con-
verted to vertices and the area borders are converted to
edges.  Thus, the map coloring problem can be solved by
the same network as the graph coloring problems.  For
example, the problem of coloring the graph with five
vertices, shown in Figure 2, is equivalent to the problem
of coloring the map with five areas, which is also drawn
in Figure 2.

vertex v1

vertex v3

vertex v5

vertex v4

vertex v2

c1

c3

c3

c2

c4

Figure 2.  An example of a graph coloring problem
and its representation

The network structure used for solving the problem is
shown in Figure 3.  Only part of the network connection
is drawn in Figure 3, because otherwise the figure will be
too complicated.  The neurons, N11, N12, …, Nncnv (nc is
the number of colors and nv is the number of vertices)
are two-dimensionally arrayed.  The neurons in a column
represent the color of a vertex.  The neurons in a row
represent the same color.  There are inhibitory connec-
                                                                        
1 Several variations of the method of increasing/decreasing
frustrations are available.  Additive frustration is one of them.
However, the method described above is the best tested so far.

tions between the neurons of the same vertex (i.e., in the
same column), because a vertex has only one color at a
time.  There are inhibitory connections between the neu-
rons of the neighboring (i.e., connected) vertices in the
same row, because the neighboring vertices must not
have the same color.  The weights of the connections
between neurons are defined so that the energy function
takes the minimum value at solutions.  This means that
the constraints are embedded in this network.  When
FAM is used, the constraints are also embedded in the
mechanism of FAM.  Thus, the constraints are expressed
twice in DSN-FAM.
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he neurons of neighboring`
reas are connected.

There is a constraint 
that only one neurons is 
activated (i.e., the input 
sum is 1).

he output values of neurons are 0 or 1.

N42

N31

…

…

…

…

.

..
.
..

Neurons for 
Blue color

Neurons for 
Red color

Neurons for 
Green color

Figure 3.  The network structure for solving coloring
problems

Two coloring problems are used for performance
evaluation.  One is a problem to color the USA mainland
map shown in Figure 4 using four colors.  This problem
was also used by Takefuji [Tak 92].  The number of ar-
eas is 48.  The other is a graph coloring problem, which
is called DSJC125.1, in DIMACS benchmarks
[Tri][DIM].  The number of vertices is 125 and the num-
ber of colors is five.  This problem was used by Johnson,
et al. [Joh 91] and by Selman and Kautz [Sel 93].
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Figure 4.  The USA mainland map coloring

5. Results of Performance Evaluation
Performance of DSN-FAM is shown and it is compared
with other methods here.  Random asynchronous execu-
tion order is used in all the experiments.

Firstly, the performance of the USA map coloring
problem is described.  This problem is a rather easy
problem in coloring problems.  DSN without FAM was
tried 100 times.  A solution could be found only once.
The network stopped at non-solution state 99 times.
Thus, DSN without FAM is unacceptable for solving
coloring problems.  The performance results of sequen-
tial execution using DSN-FAM, CCM-FAM and
Bolzmann Machine are shown in Table 1.  The perform-
ance results in this table are average of 20 runs.  Al-
though the temperature scheduling of Boltzmann
Machine is not highly optimized, the execution time is
50 or 500 times larger than the methods using FAM.

Table 1. Performance of the USA
 mainland map coloring

Method CPU time (seconds)
DSN-FAM 0.2
CCM-FAM 0.02

Boltzmann Machine 10

*  f0 = 10–16, c = 2.

Secondly, the sequential and parallel performance of
DSN-FAM was evaluated using the Cray Superserver
6400 with 12 CPUs and shared memory.  The results are
shown in Table 2.  The performance results are also av-
erage of 20 runs.  The performance of CCM-FAM was
measured using the same machine and the performance
of SA using the Sequent Balance 21000 by Johnson et al.
are also shown.  A solution was always found by both
DSN-FAM and CCM-FAM.  A Boltzmann Machine was
also tested, but no solution can be found within several

hours.  Thus, the performance of DSN-FAM is also
much better than the Boltzmann Machine.  Because the
Balance 21000 is much slower than the Cray, we cannot
conclude that DSN-FAM performs better than Johnsons’
SA.  CCM-FAM performs better than DSN-FAM be-
cause the number of neurons used in DSN-FAM is nc
times larger than the number of data used in CCM-FAM,
where nc is the number of colors.  However, if the exe-
cution time of DSN-FAM is divided by nc , the execution
time is comparable with CCM-FAM.

Table 2. Performance of DSJC125.1
(a graph coloring problem)

Method CPU time (seconds)
DSN-FAM (sequential)* 160
DSN-FAM (12 parallel)* 16.6
CCM-FAM (sequential)** 13.2
CCM-FAM (12 parallel)** 1.5

Johnson et al. (sequential)*** 720

*  f0 = 10–16, c = 2.
**  f0 = 10–5, c = 2.
*** Sequent Balance 21000 was used.

The performance is improved nearly linearly by the
parallel processing using 12 processors as same as CCM-
FAM [Kan 96].  This fact is noteworthy because an-
nealing techniques such as SA is difficult to parallelize
and the parallel performance is not good, because of their
global and sequential nature.  For example, see Wong
[Won 95].

6. Conclusion
A method of solving CSP using a symmetrically-
connected neural network with discrete-output neurons
(DSN) and using a new annealing technique, which is
called FAM, is proposed in the present paper.

The advantages of DSN-FAM are as follows.  Firstly,
this method performs much better than DSN without
FAM or Boltzmann Machines.  Secondly, FAM requires
no global parameters nor global control.  FAM is based
only on local information and works autonomously.

The disadvantages of DSN-FAM are as follows.  This
method can be used only for CSP.  The constraints are
embedded twice in the connection and in the mechanism
of FAM, and the expression is thus redundant.  This
method currently has no theoretical basis.

Possible future work is to study the following exten-
sions of DSN-FAM.  The mechanism of DSN-FAM may
be simplified without performance degradation.  The
simplification may cause formalization easier.  A method
that is an extension of FAM may be applied to continu-
ous-state and/or continuous-time neural networks.
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