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Abstract
Levy and Montalvo, Yao, and Shima individually

proposed tunneling algorithms.  The tunneling algo-
rithms employ analogy to tunnel effect in physics, and
are used to optimize continuous systems.  The present
paper proposes a method of solving combinatorial prob-
lems using a type of randomized dynamic tunneling tech-
nique.  This method is based on a computational model
called CCM*.  CCM* is an extended version of the
Chemical Casting Model (CCM).  CCM was proposed
by the author toward developing a method of solving
open and incompletely-specified problems that may
change while being solved, using self-organizing com-
putation.

The 0–1 integer programming problem is solved us-
ing CCM* with a very simple rule and an evaluation
function.  CCM* allows us to escape from local maxima
by composing the rule dynamically and randomly.  This
cannot be done by using the original production rule as
is.  Our experiments show that approximate solutions
can be found more rapidly by CCM* than by using a
branch-and-bound method in the case of 0–1 integer
programming.

1. Introduction
Most combinatorial optimization problems (COPs) in
Operations Research and constraint satisfaction prob-
lems (CSPs) in Artificial Intelligence are classified as
NP-hard or NP-complete problems.  Thus, these difficult
problems are believed to be unable to find their exact
solution in polynomial time.  However, these problems
are usually static.  Constraints and evaluation functions,
or objective functions, included in these problems are
not varied while solving them.  Real world problems are
not necessarily expressed by such static constraints and
evaluation functions.  New information may be found
while solving problems, and preexisting information
may be dynamically changed by environmental change.

                                                                        
* A previous Japanese version of this paper was presented at
the Technical Group on Softeare Engineering in SICE (the
Society of Instrument and Control Engineers) in 1994.

Although such real-world problems have similarity to
control problems in the respect that information varies as
time goes on, the above problems are much more com-
plex because there are both quantitative changes and
qualitative changes.

Kanada [Kan 92, Kan 94] proposed a computational
model called CCM, which aims to solve such problems
by using self-organizing or emergent computation
[For 91].  Complete information for solving the prob-
lems cannot be grasped beforehand in such situations.
However, conventional combinatorial problem solving
methods, including branch-and-bound methods, simu-
lated annealing, evolutionary computation, and so on,
are usually based on complete information.  These meth-
ods require an objective function, which is defined using
global information, to be specified completely.  Thus,
these methods are weak when the environment changes.
CCM was developed for computation based on local and
partial or incomplete information, and is based on a pro-
duction system [For 81].  Production systems are often
used for developing expert systems or modeling human
cognitions, but CCM differs from conventional produc-
tion systems in two respects.  Firstly, evaluation func-
tions, called local order degrees, are computed using
only local information.  Secondly, stochastic control or
randomized ordering of rule applications is applied.
Production rules and local order degrees are computed
using only local information.

CCM has been applied to classical CSPs and COPs,
which are closed and fully-informed.  CCM has also
been applied to the N-queens problem [Kan 94], coloring
and fuzzy coloring of graph vertices or maps [Kan 95],
and the traveling salesperson problem.

The present paper explains a method of solving com-
binatorial problems using CCM*, an extended version of
CCM, in which a mechanism of tunneling [Lev 85,
Yao 89, Shi 93] is added.  This method makes it possible
to escape from local maxima, which cannot be escaped
from by applying the original production rule, by com-
posing a new rule from the given rules dynamically and
randomly.  CCM* is explained in Section 2.  A method
of solving COPs is briefly explained in Section 3.  A
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detailed method and the results of its application to 0–1
integer programming problems are described in Sec-
tion 4.  Section 5 gives the conclusion and mentions fu-
ture work, including extensions to dynamic combinato-
rial problems.

2. Computational Model CCM*
This section explains computational model CCM and its
extended version, CCM*.

2.1  Chemical Casting Model
The system components of CCM are shown in Figure 1.
CCM is a computational model based on a production
system, and is often used for developing expert systems.
The set of data to which the rules apply is called the
working memory.  The collection of rules and functions
that determine the behavior of the system, which is usu-
ally called a program, is called a caster in CCM.1
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Figure 1.  The elements of CCM

A unit of data in the working memory is called an
atom.  An atom has a type and an internal state, and may
be connected to other atoms by links.  Links are analo-
gous to chemical bonds, with the difference that chemi-
cal bonds have no direction but links may have direc-
tions.  Any discrete data structures such as lists, trees,
graphs or networks can be represented using atoms and
links.
A caster consists of reaction rules and local order de-
grees.  Reaction rules change the state of the working
memory locally.  “Locally” means that the number of
atoms referred by a reaction rule is small.2  The reaction
rules are written as so-called forward-chaining produc-
tion rules [For 81], such as chemical reaction formulae
or as rules used in expert systems.  The syntax of reac-
tion rules is as follows:

LHS → RHS.

                                                                        
1 The word “program” is not used in CCM, because “program”
means a whole and complete plan.  We use “caster” instead.
2 Because (physical) distance has not yet been introduced in
CCM, as it has in systems such as a chemical reaction system,
“locally” does not mean the distance is small.

The left-hand side (LHS) or “reactants,” and the right-
hand side (RHS) or “products” are sequences of patterns.

For example, the following reaction rule, which is a
rough sketch, simulates generation of water from oxygen
and hydrogen:

H-H,  O-?  →  H-O-H,  ?

(This approximately means H2 + 
1
2  O2 → H2O).

There are four patterns on each side of the rule: two H’s,
an O, and a question mark, which is a variable that
means an unknown atom.  An H matches an atom of
oxygen type, an O matches an atom of hydrogen type,
and a variable matches an atom of any type in the
working memory.

The reaction rule can be activated when there is a set
of atoms that matches the LHS patterns.  If the reaction
rule is activated, the matched atoms vanish and new at-
oms that match the RHS patterns appear.3  Just one re-
action rule is enough for solving a simpler problem such
as the graph vertex coloring problem or the 0–1 integer
programming problem, which are described later.  There
will be two or more reaction rules in more complex sys-
tems, in which there are two or more ways of changing
atoms.

Local order degrees (LODs) are a type of evaluation
functions (objective functions).  LODs express the de-
gree of local “organization” or “order.”  They are de-
fined using only local information, and the user defines
that they have a larger value when the local state of the
working memory is better.  An LOD may be regarded as
a negated energy.  For example, it is analogous to bond-
ing energy in chemical reaction systems.

A reaction takes place when the following two con-
ditions are satisfied.  Firstly, there is an atom that
matches each pattern in the LHS.  Secondly, the sum of
the LODs of all the atoms that concern the reaction, i.e.,
that appear on either side of the reaction rule, is not de-
creased by the reaction.  Reactions repeatedly and sto-
chastically (or randomly) occur while the above two
conditions are satisfied by any combination of a rule and
atoms.  The system stops when such a combination is
exhausted.  However, reactions may occur again if the
working memory is modified because of changes of the
problem or the environment.  Thus, the system using
CCM can solve the dynamical problems mentioned in
the introduction.

In general, there may be two or more combinations
that satisfy both conditions at once.  There are two pos-
sible causes that generate multiple combinations.  One
cause is that there are two or more collections of atoms
that satisfy the LHS of a reaction rule.  The other cause

                                                                        
3 So an atom may be modified, bonded to another atom, re-
moved, or created by a reaction rule.



1995 Int’l Conference on Systems, Man and Cybernetics (SMC ’95), (C) 1995 by IEEE, Revised version 2.1

3

is that there are two
or more reaction
rules, under which
there are atoms that
match the patterns in
the LHS.  In each
case, the order of the
reactions, or the se-
lection order of such
combinations, and
whether they occur in parallel or sequentially are deter-
mined stochastically.

Thus, the behavior of the system is determined by
coevolution, or emergent and collective behavior, of dy-
namically constructed parts: the units of reactions or sets
of atoms and a rule.

2.2  CCM* — an extended version of CCM
The above mechanism has the following drawbacks.

(1) A CCM-based system may easily be trapped by a
local maximum.  For example, the above water-
generating rule might not be activated because it
generates an unbonded oxygen atom, whose energy
must be very high (or whose LOD must be very low).

(2) Computation in a CCM-based system may some-
times be very inefficient, because it refers only local
information, i.e., only a few objects, and so it may
cause reactions that do not help solvethe problem and
may waste CPU time.

These drawbacks can be remedied by introducing a
type of tunneling method.  If reaction rules are applied
two or more times without calculating the sum of LODs
in between, both local maximum and inefficiency can be
avoided.  This process is nearly equivalent to a reaction
caused by a reaction rule that is a composition of the
original rules twice or more.  The composition takes
place dynamically and randomly.  This extended version
of CCM is called CCM*.

As an example of (1), if the water-generating rule is
applied twice, two water molecules are generated and no
single oxygen atom is generated:

H-H, O-O, H-H → H-O-H, H-O-H.

Thus the high energy state can be avoided.  A detailed
version of CCM* for a COP is described in the next sec-
tion.  The reason that this method can be regarded as a
tunneling method is also mentioned in the next section.

3. Solving Combinatorial Problems Using
CCM*

The present section describes a system that solves an
optimization problem.  This system solves the 0–1 inte-

ger programming problem, which is an example of a
COP.

Integer programming problems (IPPs) are constrained
linear programming problems in which values of vari-
ables are limited to integers.  Real-valued linear pro-
gramming problems can be solved by efficient algo-
rithms such as the Simplex method, which is widely
used, or Karmarker method, which is usually slower than
the Simplex method if the problem is not very large, but
which solves the problems in polynomial order time.
However, IPPs are NP-hard.  Thus, the scale of solvable
problems is limited, although better heuristics for
branch-and-bound methods are known.

The following type of IPPs, in which the variable
values are restricted to 0 or 1, are called 0–1 integer pro-
gramming problems (0–1 IPPs):

Maximize objective function  F = ∑
j = 1

n 
cj xj  ,  subject to

∑
j = 1

n 
aij xj   ≤ bi  (i = 1, 2, …, m), where xj  ( j = 1, 2, …,

n) are variables, xj ∈ {0, 1}, and aij , bi , and cj are
constants.

This problem is solved using CCM as follows.  One of
the n variables is selected randomly, and its value is
switched to the other value if and only if this switching
makes the objective function value (F) better.  This
process is repeated until no more switching will occur.

The content of the working memory, the reaction
rule, and the LOD are explained below.  The working
memory contains an object, Sum (of type sum), which
contains the objective function value: F, a list of the val-
ues of the LHSs of the constraints: C, and a list of the
values of the RHS of them: B.  The ith element of C (or
B) is written as Ci (or Bi).  A very simple reaction rule
shown in Figure 2 is given.  This rule selects a variable
Var of type var, and changes its value X to 1 – X.  This
means that if the value is 0 it is changed to 1, and if it is
1 then it is changed to 0.  Then the rule updates the val-
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ues of the objective function and the LHSs of conditions
in Sum.1

An LOD is defined only for Sum, or for objects of
type sum.

Os(Sum) =
Sum.F if Sum.Ci ≤ Sum.Bi for all i ∈ {1, 2, …, m}
– ∞ otherwise

An LOD is not defined for variables: the LOD for ob-
jects of type var is always 0.

When the above system is activated, a reaction occurs
only when the objective function value, which is equal to
the total of the LODs, increases by the reaction.  Thus,
the above method realizes a simple hill-climbing
method, although it does not necessarily move toward
the steepest slope.  That means that, although the above
system works on local information, or refers only a few
objects in each reaction, the global computation process
becomes hill-climbing.  This is quite different from sys-
tems for solving CSPs, such as graph vertex coloring.
Kanada [Kan 94] named such hill-climbing systems co-
operative systems, and named other types of systems
conflicting systems.

Because the above system is cooperative, it is easily
captured by a local maxima if the original CCM is used.
It is impossible to find an optimum solution, or even to
find a nearly optimum one.  This problem may be solved
by supplying a more elaborate rule.  However, this re-
duces the advantage of CCM, that a combinatorial
problem can be solved by a combination of a simple rule
and an LOD.

A better solution is to use CCM*.  If the reaction rule
is applied twice or more simultaneously, the system can
skip over a valley of the mean order degree (MOD), as
illustrated in Figure 3.  Here, MOD means the mean
value of LODs.2  That is why this method is called a
tunneling method.  Tunneling methods (algorithms)
were proposed by Levy and Montalvo [Lev 85], Yao
[Yao 89] and Shima [Shi 93].  The tunneling methods
are motivated by the concept of a tunnel effect, and are
used for optimizing continuous systems.  The direction
of search is determined dynamically and randomly.  This
method can be regarded as a symbolic version of a ran-
domized tunneling method [Shi 93].3

                                                                        
1 The value B, a component of Sum, is ommitted from Fig-
ure 5, because it is not referred explicitly in this rule.
2 Although CCM-based systems do not compute MODs, they
operate so as to increase MODs or sums of LODs stochasti-
cally. MODs can be defined in small, medium, large or any
other scale.
3 Thus, the relation between the randomized tunneling method
and CCM* are similar to the relation between EP (evolutionary
programming) and GA (genetic algorithms), because EP is
numerical and GA is mostly symbolic.

4. Application to 0–1 Integer Programming
The method of solving 0–1 IPPs shown in the previous
section is described in detail, and results of experiments
are shown in the present section.
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bolic tunneling

4.1  Detailed method
In an execution of CCM*, a reaction rule is interpreted
in the following method:

(1) Initialization:  Define the upper bound of the number
of reactions, M, using a random number.  The distri-
bution of the random number is mentioned later.  De-
fine the current state of the working memory as S0,
and set i to 1.

(2) Test of reactivity:  Define the state after applying
the reaction rule (randomly) to the working memory
in state Si –1 as Si .  Assert that the sequence of reac-
tions, a1, a2, …, ai , changes state S0 to Si .  Define
the sum of the LODs of objects in state S0, which ap-
ply to one of the reactions in the sequence, as O0, and
define that in state Si as Oi .

(3) Reaction:  If O0 < Oi (or O0 ≤ Oi) holds, cause the
sequence of reactions, a1, a2, …, ai , and return from
this procedure.
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(4) Preparation for next
reaction:  Increment i by
1.  If i ≤ M  then go to
step (2) and find the next
state.  If i > M then go to
step (1)  (restart this pro-
cedure from S0).

This procedure is simpli-
fied.  More exactly, the state
of the working memory is updated to Si in step (2), and
it is (locally) backtracked to S0 when going to step (1)
from step (4).  In addition, this procedure must be modi-
fied if there are two or more reaction rules.

The distribution of the random numbers used in Step
(1) can be selected from a variety of distributions.  The
distribution shown in Figure 4 is used in the experiment
shown in the next subsection.  This distribution is fairly
close to an exponential function.  However, it is not yet
known whether an exponential function is really better,
and why it is better if so.  Anyway, the performance is
not very sensitive to the distribution function in our ex-
periments.

Known facts on the random numbers to define the
upper bound of the number of reaction (the upper bound
of the distribution) are as follows.

❏  Search efficiency:  It is possible not to use random
numbers but to use a fixed value for the upper bounds
or to use an unbound number of reactions.  However,
experiments have shown that these methods to be inef-
ficient at least in 0–1 IP problems.  The reason is
probably that to search neighbor state is probabilisti-
cally more efficient than to search distant states when
the current value of the objective function is closer to
its optimum value.

❏  Likelyhood of getting an optimal solution:  There
are cases in which the system can reach the optimum
solution by a reaction rule composed µ times, but it
cannot reach the optimum solution by a rule com-
posed less than µ times.  In such a case, it cannot
reach the optimum solution if the number of reac-
tions is limited to less than µ.  It is therefore better
not to set an upper bound on the random numbers if
the value of µ is not known.  However, the upper
bound can be set to n in 0–1 IPPs because µ is known
to be m n.

4.2  Experimental results
The experimental results of fifty 0–1 IPPs are shown in
the present subsection, comparing with those of a sim-
ple CCM and a branch-and-bound method.  The value
of m is fixed to 10, that of aij is between 0 and 105, and
the problems are generated randomly for each value of n,
10, 20, 30 and 40.  These restrictions are set so as to

make experiment easier, but they are not essential.  The
value of cj is 25000 when n = 10 and it is 50000 when n
= 20 for all j.

The result of solving each problem eight to sixteen
times by CCM* is shown in Figure 5.1  The probability
that the optimum solution is found by one trial is called
the (one-trial) optimum probability in the present paper.
The vertical coordinate of the left end of each polygonal
line indicates the optimum probability.  The optimum
probability is 0.97 when n = 10, and it is more than 0.37
for all the values of n.  The probability that the best so-
lution in k trials is optimum is called the k-trial optimum
probability.  Multiple trials are measured because differ-
ent solutions are found in different trials because of ran-
dom numbers.  Two- to sixteen-trial optimum proba-
bility and the CPU time needed for calculating the solu-
tions are also shown in Figure 8.  The eight-trial opti-
mum probability is more than 0.89.  Part of the results of
the optimum probability and the ratio of the approximate
and exact values of the solutions in average (CCM*-
Average ratio) and in the worse case (CCM*-Worst ra-
tio) are shown in Table 1.

The CCM* has been compared with three other

                                                                        
1 The performance was measured using a SOOC language
processor on a Macintosh Quadra 700.  The optimum solutions
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Table 1.  The solution optimality of fifty 0–1 IPPs by CCM-based methods

CCM* Original CCM CCM with SA

n Optimum
prob-
ability

Average
ratio

Worst
ratio

Optimum
prob-
ability

Average
ratio

Worst
ratio

Optimum
prob-
ability

Average
ratio

Worst
ratio

10 0.97 0.998 0.83 0.012 0.62 0.14 0.42 0.95 0.77
20 0.71 0.995 0.91 0.000 0.63 0.19 0.006 0.80 0.37
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methods on the same 0-1 IPP.  The first method is the
original CCM, and the second method is an improved
version of CCM, in which a simple simulated annealing
(SA) is introduced.  No tunneling method is applied in
these methods.  The performances of these two methods
are also shown in Table 1.  This table shows that CCM*
is much better (the optimum probability is 2.3 to 81
times higher) than the other two methods.  The third
method is a branch-and-bound method.  Because it was
not possible to measure the execution time of every
problem because of CPU time limitations, the first four
problems for each value of n are measured.  The results
are shown in Table 2.1  We can probably conclude that
the method based on CCM* is faster if the multiple-trial
optimum probability is allowed to be 0.9 to 0.99, al-
though a satisfactory comparison is not possible by this
result, because only a small part of the problem is meas-
ured and the hardware and software are not the same.
However, solutions found by the method based on
CCM* are not assured to be optimum even when the
computation is repeated so many times.

Table 2.  The execution time (sec) of the first four 0–1
IPPs by branch-and-bound method

n Problem
1

Problem
2

Problem
3

Problem
4

Average of
1 to 4

10 12 sec 15 sec 12 sec 15 sec 14 sec
20 73 200 20 212 126
30 172 108 630 460 343
40 487 2081 780 705 1013

5. Conclusion
Methods of solving combinatorial problems using
CCM* are explained in the present paper.  One of these
methods, using a tunneling technique, can find a solution
probably in less time in average than branch-and-bound
methods in randomly generated 0–1 IPPs, if expected
multiple-trial optimum probability is allowed to be 0.9 to
0.99.  The tunneling method described in Section 4.1 can
easily be built-in to the reaction rule compiler, and this
increases the probability of discovering approximate
solutions of 0–1 IPPs.  CCM* can also be applied to
other combinatorial problems.

Possible future work is as follows.  Firstly, the rela-
tion between the distribution of upper bounds and the
efficiency remains unknown.  However, there is a
chance of performance improvement.  Secondly, a more
powerful method is probably necessary for finding an

                                                                                                                   
for the comparison were found using a branch-and-bound
method.
1 The solver of Microsoft Excel on Macintosh Quadra 840 AV
has been used for this measurement.  Each time in this table
includes time for “formulation.”

optimum or nearly optimum solution in the case of more
difficult problems such as the traveling salesperson
problem, because there are two or more ways of com-
posing reaction rules and their performances are differ-
ent.  Thirdly and most importantly, application of CCM*
to dynamically changing problems in open and complex
systems is the major target of this research.  The current
CCM* can already be applied to such problems.  Other
appropriate problems should be discovered and chal-
lenged using CCM*.
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