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Abstract

Today’s computer applications often require on-line input and output and some-

times requires change of computation methods while processing complex tasks.  In

future, they will probably be required to change even the objectives of computation.

Such a new style of information processing is called real-world computing in the

present paper.  Real-world computing requires computation languages to work

without fixed sequence of control nor fixed data flow, to work without a whole plan

of computation, to be always open to environment at any time, to have possibility of

distributed and parallel processing, to have possibility to respond to nondeterministic

actions, and so on.  Because today’s programming languages are considered not to

satisfy these requirements, a new computation model called CCM (chemical casting

model) and a language called SOOC-94, which partially satisfies the requirements,

are developed as the first step.  Computation is regarded as biased random walk in

CCM.  The random walk is realized by a randomly acting forward-chaining

production system, and the bias is realized by locally computed evaluation functions

* Part of this work was done at Central Research Laboratory, Hitachi Ltd.
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in SOOC-94 .  I have developed a preliminary version of compiler and interpreter, and

analyzed the computation processes and results of graph coloring problems for

example.
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1. Introduction

Today’s high performance computers are used for more and more complex applications, such as

large-scale expert systems or simulation of complex natural or social phenomena.  In the period

of batch processing, computers performed closed processing based on input supplied beforehand,

and outputted the result after the completion of computation.  However, today’s computer appli-

cations often require on-line input and output, and sometimes require change of computation

methods while processing complex tasks.  In other words, on-line and real-time processings have

become much more important.  In future, they will probably be required to change even the

objectives of computation.  Such a new style of information processing is called real-world

computing  in the present paper.1

Not only hardware nor operating systems but also programming languages must meet the

requirements of the real-world computing.  Because, implementation of the information process-

ing based on new paradigms using programming languages based on old paradigms is similar to

implementation using machine languages.  However, do today’s programming languages try to

meet the requirements?  Although various new languages, such as logic or functional program-

ming languages, have been developed, older languages, such as Fortran  or C , are still major in

writing applications.  One of the reasons is considered to be that the programming languages

have been developed toward different directions from meeting the processing style changes, and

thus they have not tried to meet the requirements.

The objective of this research is to build a new computation model and a language, which are

suitable for describing complex real-world computing systems that are open to their environ-

ment.  In this model and this language, input from the environment or output to it must be

allowed while computing, and even change of computation methods should be allowed.  As

mentioned before, one of the features of real-world computing is that it is real-time, and includ-

ing real-time processing facilities into conventional languages has been researched.  However,

1 This definition of real-world computing is not necessarily popular in the community of programming languages,
nor in our organization, the Real World Computing Partnership.
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the objective of our research is to reexamine the basic mechanism of computation radically or to

ask the question by Backus [Bac 78] again, i.e., “Can programming be liberated from von

Neumann style?,” and to go far beyond the solution given by Backus.

The backgrounds of this research are the results given by the researches of self-organizing

systems, i.e., Prigogine [Pri 87], Haken [Hak 78], and so on, which are excellently surveyed by

Jantsch [Jan 80].  This research is also influenced by the researches on action-based robots

[Bro 86] and Artificial Life [Lan 89, Lan 92], which have emergent properties [For 91].

This paper reports a trial towards the establishment of new style of computation languages.

A computation language SOOC-94 is proposed as a prototype.  SOOC-94  is based on the chem-

ical casting model (CCM) [Kan 92, Kan 94].1  The purpose of the present paper is to analyze the

requirements of real-world computing, to explain the features of SOOC-94 , and to verify that

this language partially satisfies the requirements.  The requirements are analyzed in Section 2.

Several new language features of SOOC-94  are explained in Section 3, and a simple example

using SOOC-94 is shown in Section 4.  Whether the requirements described in Section 2 are

satisfied is verified, compared to conventional programming languages, in Section 5.  Several

implementation issues are explained in Section 6.  Conclusions are given in Section 7.

2. Requirements of Real-World Computing

Six requirements of new style of computation models or languages by the new style of informa-

tion processing, or real-world computing, are analyzed in this section.

(1) Openness to the environment

Computation must be always open to environment when using the new language.  Namely, the

system must be able to accept sudden and unexpected input of data or program from the envi-

ronment of the computation, such as users or networks.  Although it is not impossible to

satisfy this requirement using procedural programming, it is similar to assembly program-

1 “Casting” is used instead of “programming” in CCM because “programming” means making a complete plan,
which is not the target of CCM or SOOC-94.
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ming.  Better features must be supported by the new language.  Conventional languages are

not quite suitable for satisfying this requirement because they are not prepared to accept

sudden and unexpected input or change, even if they have parallel processing features, which

are good for accepting expected  input.

(2) Possibility of distributed/parallel processing (DPP)

DPP must be possible when using the new language.  Distributed processing means conceptu-

ally distributed processing here.  Namely, it means processing by cooperating agents that

sparsely communicate each other, but not necessarily physically distributed.  Such distributed

processing is important for realizing computation without a whole plan, which will be

described in item (5).  Many researches aim such distributed processing by extending conven-

tional programming languages.  However, I think it is doubtful for such researches to perform

the objective without reexamining the microscopic (procedural or functional) mechanism of

computation.  Although the purpose of parallel processing and distributed processing are

different, they require similar conceptual properties to languages.

(3) Respondability to nondeterminacy

The computation must respond to nondeterministic actions caused by the environment or DPP

when using the new language.  Unexpected information may be inputted as described in item

(1) and a change of computation purpose may be required, even when the system is busy at

computation, and a type of nondeterminacy is inevitable in DPP.  For example, the timing and

contents of communication between agents are not known beforehand, and the computation is

sometimes dependent on the order of computation, that is not decidable beforehand.

Respondability to nondeterminacy assures robustness of the system.

(4) Unfixed control flow and data flow

Computation must be able to perform even when the sequences of control flow or the data

flow are not fixed in the new language.  Because, if they are fixed, flexible computation

required by the real-world computing is not realized.  Ashby advanced the law of requisite
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variety, which states that a system must have the same or more amount of variety than that of

the environment [Ash 61].  This law can be interpreted that there must be more internal

variety, i.e., paths of control flow and data flow that can be switched by external causes, than

the external variety, i.e., the nondeterminacy caused by the environment.  For example, if the

sequence of control is fixed, the system cannot meet the requirement on a change of

processing order.  Although this requirement has been tried to be satisfied by conventional

programming paradigms, such as logic programming, constraint programming or production

system, they meet only very limited part of this requirement.

(5) Computability from partial and local plan

Computation must be able to be performed even when only a partial and local computation

plan is given, if using the new language.  In other words, the new language must support

emergent computation [For 91].  When using conventional languages, basically, computation

cannot be started unless a whole and global plan is given.  That is, a specification must be

given first, and a program, which follows the specification, must be given before starting

computation.  However, the objective of computation is not usually very clear when

computational systems begin to work, if they are large, complex and open to their

environment.  The plan may be added or it may be changed after the computation starts.  Even

a plan or objective may become clear by the computation.  Thus, the computation must be able

to run without a whole plan.

(6) Real-time processing

Real-time applications should be able to be implemented in the new language.  High perfor-

mance is needed to satisfy this requirement.

(7) General-purposeness

New languages should be general-purpose as well as conventional programming languages.

Less general-purpose languages will not be successful unless its application is very much

popular.
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3. SOOC-94: A Language Based on Biased Random Walk

A computation model based on biased random walk and a language called SOOC-94, which

realizes the model, is explained in this section.

3.1  Computation as biased random walk

A computation process can be regarded as a sequence of state transitions.  State transitions are

caused by the system itself (by the program) or by an input from the environment.  This model is

basically sequential.  DPP cannot be modeled precisely by this model because state transitions

may occur independently and in parallel in each part of the system in DPP.  However, this model

is considered to be better than models with explicit parallelism.  The reason is explained later in

Section 5.

The set of computation states is called state space  (See Figure 1  (a)).  Although it is called

“set,” it is not asserted that all the states are given beforehand.  Thus it does not mean the math-

ematical sense of set.  Computation is a sequence of transitions between the elements of state

space.  If the elements of a state space are regarded as vertexes, and each pair of two vertexes is

connected by a directed edge if the transition from the first vertex to the second is possible, a

directed graph, such as illustrated in Figure 1 (b) is created.  This graph is called a computation

graph .1

It is asserted that an edge is selected from all the edges connected to a vertex, a state,

randomly in computation.  Thus, computation is basically a random walk  on a computation graph

in our model.  The reason that the random walk is used is explained later.  However, the

objective of computation is not usually performed or it is too slow by a complete random walk.

So the random walk is biased  by an appropriate method, and it is induced to a better direction.

The reason why computation is based on a biased random walk is that this mechanism is

considered to satisfy the requirements explained in the last section.  How the model and language

satisfy the requirements is examined in Section 5, and it will be the better solution to this ques-

1 If the computation is goal-oriented, the computation is called search , and a computation graph is called a search
graph [Kan 93b].  If it is a tree, it is called a search tree.
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tion.  So, only the most major reason is explained here.  This mechanism is used because the

computation can be performed only by giving a computation graph without giving whole plan

nor sequence of control.

Kanada [Kan 92, Kan 94] proposed the chemical casting model (CCM), which is based on

biased random walks on computation graphs.  CCM has an analogy to chemical reaction

systems.  The semantics of SOOC-94 , the language described below, is based on CCM.

State transitions

… ……

Current state
Random walk

(a) State space (b) Computation graph and random walk

Figure 1.  State space and computation graph

3.2  Reaction rules — description of partial computation plan

Edges of computation graphs, or possible state transitions, are given by forward-chaining produc-

tion rules in SOOC-94.  Namely, a computational system is expressed as a type of production

system.  However, this type of production system is quite different from that used for building

expert systems or for the researches of cognition, for example, OPS5 [For 81].

Production rules are given by user and they are fixed in SOOC-94 .  As long as production

rules are not changed (or learned) by computation, the requirements explained in the previous

section may partially be remained unsatisfied.  However, it seems to be good as a starting point.

Because production rules are fixed in SOOC-94, all the states that there exist transitions from a

known state, or all the neighbor vertexes of a known vertex on the computation graph, can be

known beforehand.  An appropriate state is selected from these states, and transition to this state

is caused.  The state is selected randomly.  Thus the computation is basically a random walk.
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To explain the syntax and the semantics of reaction rule definition in SOOC-94 , a simple and

probably meaningless example of rule is given here.

(defrule change-color

  (var V) ; the declaration part
  (exist V vertex (:color ‘Blue)) ; the LHS condition
 -->

  (exist V vertex (:color ‘Red))) ; the RHS condition

The name of the rule is change-color.  A variable named V is declared and used in this rule.

A syntactic element that begins with “(exist” is called an existence condition.  Existence

conditions before the arrow (-->) are called the left-hand side (LHS) conditions, and those after

the arrow are called the right-hand side (RHS) conditions.  In the above rule, there is only one

LHS condition, and it matches an object of type vertex.  The matched vertex is referred to as V

in the rule.  There is also only one RHS condition in the above rule.  The same vertex, V, is

matched to the above RHS condition.  There may be two or more LHS and RHS conditions in

general.

Data are put in the working memory (WM) in SOOC-94.  A state transition caused by a rule

application is called reaction  in SOOC-94  because of analogy to chemical reaction system.  LHS

conditions are the preconditions of the reaction, and RHS conditions are the post conditions.  The

above LHS condition can match a vertex in WM if the color of the vertex is Blue, and the above

RHS condition can match a vertex in WM if it is Red.  Thus, when the LHS of this rule is tested,

a vertex is randomly selected, and the color of the vertex is changed from Blue to Red by the

reaction.

If two rules, one of which is the above rule that changes the color from Blue to Red, and

one of which is a rule that changes the color from Red to Blue, are given, and there are two

vertexes in WM, the computation graph is as illustrated in Figure 2 .  Because this graph is

strongly connected, i.e., any two vertexes are connected by a directed path, and no bias has yet

given, there is no absorbing (i.e., termination) state and the computation on this graph will

continue forever.
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BlueBlue

Red RedBlue Blue

RedRed

State 0

State 1 State 2

State 3

Figure 2.  A computation graph for simple coloring

3.3  Local order degree — description of non-sequencing control

Bias to random walk is described by the user using the form of locally computed evaluation

function, which is called local order degree  (LOD) in SOOC-94.1  The reason that biases are

specified by evaluation functions but the direction of transition is not specified directly is to

make the control flexible.

Bias works as follows.  The sum of the LODs of the object is called instance order degree

(IOD).  When a set of objects, which match the conditions of a rule, is selected, the IOD before

the reaction and that after it are computed and the values are compared (before actually causing

the reaction).  The current method of biasing is that the reaction occurs only when the IOD

increases by the reaction.  This means that bias is binary, i.e., whether it is existent or non-exis-

tent.  Non-binary, or continuous bias is also possible, but not yet tried.

A simple example of LOD is given here.

(deforder ((V vertex)) ; Definition of a self order degree2

  (if (eql (vertex-color V) ‘Blue)

    0

    1))

1 It is called LOD because the state in which LOD is higher can be considered to have more order.
2 An LOD defined for one object is called a self order degree .
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The syntax of LOD definitions is similar to that of method definitions in Common Lisp

(CLOS).  This LOD is defined for an object of type vertex.  The LOD of a vertex is 0 if its

color is equal to Blue, and it is 1 otherwise.  If this definition is used with two rules described in

the previous subsection, only reactions caused by the first rule, Blue to Red, occur, because a

reaction that is caused by the first rule increases the LOD, which is equal to the IOD of the

matched vertex, from 0 to 1, but a reaction that is caused by the second rule decreases it from 1

to 0.  Thus this LOD biases the random walk strongly and thus the biased computation determin-

istically terminates in this case.

If a weaker bias is required, it can be realized by modifying the semantics of rule applica-

tions.  The computation will be stochastically terminates under a weaker bias.  A language

feature that implements probabilistic reactions caused by bias will be added in a future version of

SOOC-94 .

Another example is given.

(deforder ((V1 vertex) (V2 vertex)) ; Definition of a mutual order degree1

  (if (eql (vertex-color V1) (vertex-color V2))

    0

    1))

This LOD is defined between two objects of type vertex.  The LOD is zero if the colors of the

two vertexes, V1 and V2, are equal, and it is one otherwise.

4. An Example using SOOC-94 and its Execution

A set of rules, LODs and a WM is called a system  in CCM.  A system to solve a coloring prob-

lem is described and its execution process and result is shown in this section.  Other examples in

CCM, i.e., an N queens system,  a TSP system, and so on, are described or mentioned by Kanada

and Hirokawa [Kan 94], though their codes in SOOC-94 are not shown there.

1 An LOD defined between two objects is called a mutual order degree .
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4.1  A coloring system by CCM

The graph coloring problem is a problem to color the vertexes of an undirected graph using

specified number of colors, for example, four colors.  For example, a problem of coloring the

graph with five vertexes, is shown in Figure 3 .  Although the simplest version of this problem is

not real-world, several extensions of this problem to real-world are discussed in Section 5.

The data structure for solving the problem is as follows.  Both vertexes and edges are repre-

sented by objects.  Then the graph shown in Figure 3 is represented by the data in Figure 4.  An

object of type vertex has a color as its internal state.  C1 , C2, C3 and C4 are the colors in

Figure 4.  Two data types, vertex and edge, must be declared in SOOC-94  by the following

declarations, because there are two kinds of objects.

Figure 3.  An example of graph coloring problem

edge vertex

vertex

vertex

vertex

vertex

edge

edge

edge

edge

edge

C1

C3

C2

C2

C4

Figure 4.  The data structure for solving the graph coloring problem
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(defelement vertex ; A vertex of graphs (“element” means data type in SOOC-94 )
  id ; the identifier of the vertex
  color) ; the color of the vertex

(defelement edge ; An edge of graphs
  (* vertex)) ; the vertexes connected to the both end of the edge

The semantics of these declarations are similar to defstruct macro of Common Lisp .  Thus

they define data structures, vertex and edge, and define component access functions;

vertex-color, edge-vertex, and so on.

Type vertex has two components, id and color.  An edge always has two neighbor

vertexes, though type edge may have any number of components named vertex by the seman-

tics of SOOC-94.  They have the same name because they must not be distinguished in the rule

because edges are undirected.  If these components have different names, they implement a

directed edge, where the head and tail are distinguished.  A graph to be colored, such as shown in

Figure 4, must be created using these data types.1

The only reaction rule to solve the problem is shown in SOOC-94  and in a visual form in

Figure 5 .  This rule refers only to neighboring two vertexes and the edge between them and

change the color of one of the vertexes randomly.  Although only one rule is used, the computa-

tion graph is strongly connected and there is no absorbing state if LOD is zero, i.e., not defined.

1 Lisp  expressions are used for building initial data structures in SOOC-92, a previous version of SOOC-94 ,
because language features for this purpose have not yet been given in SOOC-92.
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(defrule change-color

  (var E V1 selected) ; three variables are declared
  (exist E edge (:vertex V1)) ; the first LHS condition
  (exist V1 vertex) ; the second LHS condition
 -->

  (exist E edge (:vertex V1)) ; the first RHS condition
  (oneof ’(red yellow green blue) selected)

  (exist V1 vertex (:color selected))) ; the second RHS condition

(a) The reaction rule in SOOC-94

C1 C2 C1 C3

C3 ∈  {red, yellow, green, blue}

edge E

vertex V1 vertex V2

edge E

vertex V1 vertex V2

next next next next

(b) A visual representation of the reaction rule

Figure 5.  The reaction rule for the graph coloring system

Two data types are used in this caster, but the LOD of type vertex is not defined because it

is zero at any time.  The LOD of type edge can be defined in an informal form as follows:

Oedge(x) = 1 if x.next[0] ≠ x.next[1].color

0 if x.next[0] = x.next[1].color

The same LOD can be expressed in SOOC-94 as follows:

(deforder ((e edge)) ; Definition of a self order degree
  (if (eql (vertex-color (edge-vertex e 0))

           (vertex-color (edge-vertex e 1)))

    0

    1))

The informal definition means that the LOD is equal to 0 if the head and tail of the edge are

vertexes with the same color, and equal to 1 if they are with different colors.  The latter is greater

because it is a better (higher order) state.  Expressions, x.next[0] .color and x.next[1] .color, repre-

sent the internal state, named color, of the objects that are pointed by the links, next[0] and
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next[1], from object x .  The subscripts of the links are usually hidden, but they are specified here

because they must be distinguished each other.

The nature of computation in SOOC-94 is non-terminating and user input is always accept-

able.  Thus, there is no need for the system to test the termination of computation.  However,

user may want to make sure the correctness of the solution computed using SOOC-94 .  For this

purpose, the user can define a rule with depth-first option as follows.

(defrule (check-color :strategy depth-first)

(var C E V1 V2)

(exist E edge (:vertex V1) (:vertex V2))

(exist V1 vertex (:color C))

(exist V2 vertex (:color C)) ; The color of V1  and V2  are the same.
-->

; Appropriate actions to be taken.
)

This option means that the system must prove that there is no set of objects that can be matched,

by testing the rules systematically (in depth-first order) instead of testing them randomly.1

4.2  Execution of the coloring system

The rule and LOD are coded in SOOC-92, a preliminary version of SOOC-94 .  The system is

applied to the map of the main part of the USA, consists of 48 states [Tak 92].  Every time the

system ran, a solution was found within reasonable time, though the execution time varies time

to time because of the stochastic nature.  The number of reactions, the number of LHS matching

(including failed cases), and the execution time is measured on SOOC-92  interpreter on

Macintosh Common Lisp on Macintosh Quadra 700 Computer.  Their averages are 940, 34729

and 6.01 seconds.

Reactions occur successively so that the IODs increase, when the caster shown above is run.

However, a reaction may decrease LODs of the neighboring edges.  The sum of LODs of all the

1 The user may specify this option in the coloring rule.  Then there will be no need to supply a separate rule for
testing the correctness.  However, then the computation becomes non-random, and thus a limit cycle (looping) may
be caused.
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objects in WM is called global order degree (GOD).  The GOD is not linearly increased, and the

system does not necessarily find a solution in finite time, though the average time is finite.  An

example transition path of GOD is shown in Figure 6 .  The final value of the path is the maxi-

mum value of GOD, 105, in the USA map.  A distribution of total number of matchings, which is

roughly proportional to the computation time, is shown in Figure 7 .  The frequency decreases

almost exponentially when the total number of matchings is more than 30,000.1  Although this

means that there is no upper limit in computation time, the probability decreases very fast.
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Figure 6.  An example transition path of global order degree

1 This distribution and the GOD transition can be explained using Markov chain model [Kan 93a].
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Figure 7.  Distribution of computation time

5. Satisfaction of requirements from the real-world computing

Whether SOOC-94  meets the requirements explained in Section 2 is verified, compared to

conventional programming languages, in this section.  However, SOOC-94 is currently applied

only to closed and relatively simple problems such as graph coloring problems, though most of

them are NP-hard.  The statements in this subsection must be proved in open and more complex

applications in future.

(1) Openness to the environment

This requirement can relatively easily be satisfied when using SOOC-94 , because WM

(working memory) is always open to the environment.  Input from the environment is

performed by creating objects in WM, output to the environment is performed by moving (or

removing) data from WM, and they are performed by a separate process in SOOC-94.  Thus

the system can always accept input from the environment and respond to it.1  In addition, the

1 However, the current impelmentation, SOOC-92, has not yet satisfied this requirement, because it is a strictly
sequential implementation.
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execution does not terminate conceptually.  Thus, the system waits for input even when there

is currently no more task to perform.

For example, vertexes and edges can be freely added or removed dynamically in the

coloring system, and then the system finds a new solution correctly.  If there are vertexes

named V1 and V2, which are not connected, the user can input the following command at any

time, and then, a new edge that connects V1 and V2 is created.

(make edge :vertex V1 :vertex V2)

If vertexes V1 and V2 are connected, the user can input the following command at any time

(the user does not have to wait), and then, the link between V1 and V2 is removed.

(remove edge :vertex V1 :vertex V2)

A vertex can be created or removed in the same way as an edge.

(2) Possibility of distributed/parallel processing (DPP)

This requirement is satisfied because DPP is theoretically and practically made possible by

SOOC-94 .  DPP is theoretically made possible because DPP can be modeled by random walk,

because nondeterminacy caused by DPP can be modeled by stochastic processes.  If DPP is

modeled by explicit parallelism or by precise logic, the model becomes too complicated for

human to understand, and/or the requirements, such as computability from partial and local

plan, are difficult to be satisfied.

DPP can be practically made possible by physically or logically distributing objects in

SOOC-94 .  For example, objects may be distributed to parallel processors.  They are possible

in principle because computation is performed only using local information.  However,

concrete and better methods of object distribution must be found by future research, because

load balancing and object migration are difficult problems to be solved in a distributed or

parallel implementation of SOOC-94 .

There are many languages that target DPP, of course.  However, most of them target

coarse-grained parallelism, in which agents are implemented using procedural programming.
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Fine-grained parallelism is targeted in SOOC-94, as same as in CCAP (committed-choice

and-parallel) languages, such as Concurrent Prolog  [Sha 87].

(3) Respondability to nondeterminacy

This requirement can be satisfied by giving appropriate biases to random walk in SOOC-94.

If an object in WM is nondeterministically changed by an environmental change or by an

action of another agent, the new situation can be appropriately processed with changing the

bias value.  Thus, the mechanism of biased random walk also improves robustness.  In the

above example, if a new edge between V1 and V2 is added and the colors of V1 and V2 are

the same, the system works again so that the new graph will be correctly colored.  An object

removal may also cause reactions in general, though the removal of an edge in the above

example does not cause reactions.  If the computation graph is strongly connected, the bias

value change may cause a sequence of transitions to an expected state, regardless of the previ-

ous state.  However, a further research on real-world computing systems is needed to realize

the solution.

(4) Unfixed control flow and data flow

This requirement is satisfied by the mechanism of biased random walk.  The system works

only if the computation graph, where no sequential control flow nor data flow is given, is

supplied.  In addition, the system does not fall into a limit cycle (infinite loop) without speci-

fying control flow because of the randomness, even if the computation graph is not designed

so ingeniously and thus it is a strongly connected graph, which causes limit cycles if the

computation is a systematic walk on the graph.  It will also be possible to supply a computa-

tion graph partially in the initial state and to restructure it dynamically in a future version of

SOOC-94 .  On the contrary, in conventional programming languages, control flow and data

flow must be given explicitly or implicitly even in logic programming or production system

programming languages, and incomplete control flow easily causes a limit cycle.
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(5) Computability from partial and local plan

This requirement is also satisfied by the mechanism of biased random walk.  No global plan is

given in SOOC-94 .

(6) Real-time processing

This requirement is not satisfied in SOOC-94.  Although high performance is needed for real-

time processing, the performance of current implementation techniques, which are partially

described in Section 6, is not good for real-time processing.  The performance improvement is

a future work.

(7) General-purposeness

This requirement is satisfied because SOOC-94 is based on production system, which is a

general-purpose mechanism.  Although it uses random walk, it is also possible for user to

grasp the control almost completely.  It is also possible for user to use Lisp expression within

rules of SOOC-94 , because it is built using Common Lisp.  Thus, it is easy for user to use

procedural expression partially, and it makes SOOC-94  more general-purpose.

6. Implementation Issues

The basic structure and several techniques of SOOC-94  implementation are discussed in this

section.

The basic structure of SOOC-94  implementation is shown in Figure 8 .  The major parts of

the system are a compiler and an interpreter.  Both the compiler and interpreter are built on top of

Common Lisp .  Each rule or LOD declaration, which is given by the user, is compiled into a

Lisp function by the SOOC  compiler and each function is compiled to native code by the Lisp

compiler, which is a part of Lisp system.  The interpreter consists of a rule interpreter and an I/O

interpreter.  These interpreters work independently.  The rule interpreter may consist of parallel

processes.  However, sequential implementation is asserted here.  The compiled rules and LODs

are called from the rule interpreter.  The I/O interpreter is event-driven.  If an input comes from
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the environment (from the user for example) through an input device or sensor, the I/O inter-

preter is invoked and WM is modified.  If an object to be outputted is written into WM by the

rule interpreter, the I/O interpreter is invoked and an output goes to the environment through an

output device or actuator.  Mutual exclusion is necessary when modifying WM because the rule

and I/O interpreters work concurrently.1

InterpreterCompiler
Lisp
func-
tions call

native
code

Rules
(source
code) LODs

(source
code)

Data flow Control flow

Working
Memory

independent

Environment

user

I/O Devises
Sensors

Actuators

SOOC-94
Compiler

Lisp
Compiler

Rule
Interpreter

I/O
Interpreter

Common Lisp Interpreter

Compiled
Rules and

LODs

Figure 8.  Basic implementation structure of SOOC-94

A set of objects and a rule to be reacted are selected in the following way in SOOC-94.  The

objects in WM are classified by their data types, and they are stored in extensible arrays.  The

interpreter selects a rule, and it selects an object from the array for each LHS condition.  They are

selected using random numbers.  The LHS conditions are tested, the LODs are computed for

each selected object or each pair of selected objects, and the reaction occurs if all the precondi-

tions are satisfied.  Thus the scheduling, or the conflict resolution, of concurrently activatable

reactions is done by the first-fit basis.  The interpreter repeats the above process until there is no

set of objects and a rule, which can react.  This implementation is completely different from

1 The top level loop of the Lisp interpreter is replaced by the rule interpreter in SOOC-92, the current and
preliminary implementation.  Thus, rules and LODs can be defined through the rule interpreter, and the SOOC
compiler is called from the rule interpreter.  Rules and LODs cannot be defined unless the rule interpreter
terminates, for the same reason.
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conventional production systems.  Thus, the method of improving performance of matching,

called RETE [For 79], cannot be applied.  Performance improvement is a future work.

Links are implemented using pointers in SOOC-94.  For example, in the rule shown in

Figure 5, variable V1 is bound to the pointer to a vertex in the first LHS condition.  Thus the

interpreter can find the object that matches the second LHS condition immediately.  Because

conventional production systems do not support pointers, the same function needs much more

computation time, where a “join” operation is needed.

Parallel implementation, which parallelizes the rule interpreter and may parallelize the I/O

interpreter, has not yet tried for SOOC-94.  However, CCM is promising as a model of

massively parallel computation.  Reactions can occur in parallel similar to chemical reactions.

However, if two instances contain the same object, they may not be reacted in parallel.

7. Conclusion

This paper analyzes the requirements of real-world computing, and explains a computation

language SOOC-94  based on computation model CCM, and its implementation techniques.  If

SOOC-94  is refined, it will be a powerful tool for researching methods of building real-world

computing systems, and it may become a prototype of new real-world computation languages.

The main focuses of future work are as follows.  First, a complete implementation of SOOC-

94 must be developed, based on the preliminary version, SOOC-92.  Second, the design and

implementation of SOOC-94  should be refined so that they will be suitable for wide range of

real-world applications.  Development of new applications, especially, simple but real-world

computing systems, is necessary for reaching this target.
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