

Federating Heterogeneous Network Virtualization
Platforms by Slice Exchange Point

Toshiaki Tarui and Yasusi Kanada
Hitachi, Ltd., Central Research Laboratory

Yokohama, Japan
Toshiaki.Tarui.my@hitachi.com and

Yasusi.Kanada.yq@hitachi.com

Michiaki Hayashi
KDDI R&D Laboratories

Saitama, Japan
mc-hayashi@kddilabs.jp

Akihiro Nakao
The University of Tokyo, Graduate

School of Interdisciplinary
Information Studies

Tokyo, Japan
nakao@iii.u-tokyo.ac.jp

Abstract – An architecture called the slice-exchange-point
(SEP) has been designed for federating heterogeneous net-
work-virtualization platforms by creating and managing slices
(virtual networks). SEP enables whole inter-domain resources
to be managed by the network manager of any single domain.
Slice-operation commands are propagated to other domains
through SEP by using a common API. SEP introduces the
following four features: infrastructure neutrality, single
interface federation, abstract and clean federation, and exten-
sibility of capabilities. SEP’s functions to achieve these fea-
tures are discussed. SEP was partially implemented on two
VNode domains and one ProtoGENI domain and was verified
to function effectively.

I. INTRODUCTION
Network virtualization technology enables a physical net-
work to be sliced into multiple virtual networks (slices). To
execute network applications globally, it is necessary to
federate multiple parts of slices created on different do-
mains of virtualization platforms, which have wide varieties
of architecture and capabilities. So federation mechanism
has to handle heterogeneous environment.
 This paper describes features and implementation of the
slice-exchange-point (SEP) [1], which supports federation
between heterogeneous virtualization platforms. The SEP
consists of a federation manager (SEP core) with a univer-
sal federation API (common API [2]), and interworking
functions between domains and the SEP core.

The goal of SEP is to federate various heterogeneous vir-
tualization platforms, enabling developers to manage whole
federated slices easily using the control framework with
which they are familiar, and also to use original capabilities
of other virtualization platforms without constraints. To
achieve above goal, this paper introduces the following four
features of SEP: infrastructure neutrality; single interface
federation, abstract and clean federation and extensibility
of capabilities. SEP’s functions to achieve them are studied.

A SEP-based federation method with the above features
has been partially implemented on the VNode [3] platform
and ProtoGENI [5][4] platform, and slice creation between
multiple virtualization platforms was tested.

II. RELATED WORK
To utilize resources between heterogeneous platforms,
Management by Delegation [6] uses application-level
federation to enable distribution processing. SEP uses
platform-level federation to support wide range of applica-
tions. Previous platform-level federation was conducted
between G-lambda and EnLIGHTened [7], which utilize
compute and network resources each other in heterogeneous
environment. The federation requires wrappers to directly
convert commands between domains, which is difficult to
scale. The common API enables us to support multiple

domains in scalable manner.
Federation between clouds or grids [8] has been widely

investigated to utilize resources between heterogeneous
environments. The SEP’s federation supports different
capability required for network virtualization; slice configu-
ration has to be propagated during federation.
 GENI introduces the slice-based federation architecture
(SFA) [13]. Each testbeds introduces the model and capa-
bilities required for SFA, and SFA wrappers [14][15] trans-
late testbed specific APIs and resource specifications to and
from SFA-based ones. This paper proposes an alternative
method where all virtualization platforms can utilize their
own management framework.

Federating multiple networks is not supported in current
SDN or NFV. Software Defined Internet Exchange (SDX)
[16][17] is proposed to address this issue. Current SDX
focuses on SDN in IXPs, and it does not yet support in-
teroperability of heterogeneous virtualization platforms.
 There have been efforts to unify or standardize control
framework, control APIs, and resource definitions (infor-
mation and data models) [9][10][11][12]. However, single
specification may not be accepted in all domains universal-
ly. The SEP accepts multiple control frameworks with
different control APIs and methods for resource definitions.

III. OUTLINE OF SLICE EXCHANGE POINT
A. Purpose
SEP’s control plane employs exchange model to achieve
scalability required to support multiple virtualization plat-
forms [1]. A universal federation API called the ‘common
API’ and the ‘common slice definition’ (resource specifica-
tion) included in it are used to exchange federation requests.
If a federation mechanism uses a peer-to-peer translation
model, the number of bridging interfaces required increases
combinatorially with the number of virtualization platforms.
With SEP, each virtualization platform has to introduce a
bridging interface only to the common API.

B. Features
In order for developers to manage heterogeneous virtualiza-
tion platforms, SEP has to introduce the followings:
(1) Infrastructure Neutrality

The common API and the common slice definition should
not depend on a particular virtualization platform, so that
virtualization platforms with different slice architectures
and control frameworks can be federated together. Neu-
trality is crucial because each virtualization platform has
its own slice model and capabilities and SEP has to enable
their maximum use.

(2) Single Interface Federation
SEP has to offer single inter-domain interface, so that

domains can communicate each other through a single
interface to SEP. Without this, domains have to provide
different interfaces each corresponds to other domains.
Furthermore, federation has to be performed through sin-
gle developer interface, which allow developers to use the
familiar control-frameworks of their virtualization plat-
forms to create and operate federated slices.

(3) Abstract and Clean Federation
SEP has to abstract virtual resources on slices from physi-
cal resources on the substrate for both intra- and inter-
domain resources. Virtual resources have to be specified
in the common slice definition without physical-resource
information, although virtual-physical relationships could
be specified if the developer wants. SEP can be used with
any substrate networks and any virtual resources.
SEP also has to introduce clean federation, which enables
intra- and the inter-domain network to select substrate
protocols feely; without interfering with each other. In the
case of inter-domain virtual link (subsection III-E), each
domain can select any method to implement intra-domain
parts of the virtual link; VLAN, GRE, etc., and the SEP
can implement the inter-domain part independently.

(4) Extensibility of Capabilities
SEP has to handle new capabilities of virtualization plat-
forms that it does not support directly. Even if the com-
mon API and the common slice definition are designed so
as to support wide range of virtualization platforms, not
all capabilities can be supported. The extensibility feature
has to be transparent, i.e., any information can be tunneled
through SEP. This feature is indispensable for virtualiza-
tion testbeds, where new capabilities are tested frequently.

C. Architecture
SEP (Figure 1) consists of a conceptually centralized feder-
ation manager (SEP core) and interworking functions be-
tween domains and the SEP core. Each domain has a
Gatekeeper (GK) for control plane to translate domain-
specific federation commands and resource specifications
into the common API and the common slice definition and
vice versa, and a Federation Gateway (GW) for data plane
to convert packet formats (protocols, network parameters,
etc.) between intra- and inter-domain substrate. The GW is
managed by the GK. In Figure 1, left domain is the source
domain to which the developer issues slice creation request
and the right domains are destination domains that receive
common-API commands, however, as SEP’s function is
bidirectional, any domain can be a source domain.
 This realizes the SEP features in the following way:
 Infrastructure Neutrality

SEP’s commands and resource specifications are neutral
and they can be translated into those of any domain. The
extensibilities feature also loosens restrictions.
 Single Interface Federation

GK and GW provide conceptually single interface to des-
tination domains, regardless of physical inter-domain con-
figuration. Bidirectional function enables slice creation
and operation commands to be submitted to any domains.
 Abstract and Clean Federation

The common slice definition is abstract and can be speci-
fied independently of the intra- and inter-domain sub-
strate’s implementation, and each domain’s control
framework can select resource abstraction method freely.
Packet conversions at GWs enable network protocol and
parameter on the SEP’s inter-domain network to be se-
lected independently of each domain’s internal network.

D. Common API and Common Slice Definition
The common API [2] commands are classified into three
categories: resource enquiry (‘ResourceInfo’), slice han-
dling (‘CreateSlice’, ‘Add’, ‘Delete’, ‘Run’, ‘Stop’, and
‘DeleteSlice’), and obtaining information (‘Status’ and
‘Statistics’). A common-API command is transferred by a
request-and-reply message pair of XML-RPC.

The common slice definition consists of the followings:
 Each-domain’s part of the slice (virtual nodes, links)
 Inter-domain-network part of inter-domain virtual links

E. Data Plane
An inter-domain virtual link consists of three parts: two
intra-domain parts and an inter-domain part. These are
connected by GWs. Although an intra-domain virtual link is
logically one link, intra-domain parts and the inter-domain
part are physically isolated by GWs.

IV. SLICE EXCHANGE POINT FUNCTIONS
A. Translation of Command and Resource Specifications
To achieve this translation, SEP provides the following
functions, which contribute to infrastructure neutrality.
a) Command-granularity translation

Slice handling commands on each virtualization platform
are not correspond one-to-one; a single command in a
source domain could cause multiple common-API com-
mands, or multiple commands could be merged into a
single common-API command. GKs adjust command
granularity. E.g., a slice creation command (‘Create-
Sliver’) on GENI’s AM API [18] Version 2 is translated
into two consecutive common-API commands: ‘Create-
Slice’ and ‘Run’, while two consecutive AM API Version
3 commands (‘Allocate’ and ‘Provision’) are merged into
a single common-API command: ‘CreateSlice’.

b) Node-hierarchy conversion
Virtualization platforms have different hierarchical node
architecture, e.g., virtual node VMs in VNode domain are
defined inside physical enclosure; while, ProtoGENI’s
virtual nodes are defined independently. SEP abstracts
node hierarchy differences. In the common slice definition
virtual node can be specified with any hierarchical level.
Thus, the source GK can translate resource specifications
of source domains directly (without hierarchy conversion)
into the common slice definition. Destination GKs are
responsible for converting the hierarchical differences.

SEP

GW

Developer
Submit a slice
creation request

SEP
core

Source
Domain

Common API

Node

NodeGW

GW Node

Request

Reply

Request

Reply

Common API
Reply

Control Plane

Data Plane
Inter-domain
network

GK

GK

GK
Request

Common API …
…

SEP
Source
Domain

Destination Domain 1

Destination Domain 1

Destination Domain n

Destination Domain n

GK: Gatekeeper
SEP: Slice Exchange Point
GW: Federation Gateway

Figure 1 SEP (Slice-Exchange-Point) Architecture

B. Inter-Domain Virtual-Link Management
SEP can determine inter-domain substrate-network parame-
ters (link type, MAC addresses, VLAN number, etc.) freely,
without interfering with the domain’s internal network,
which help achieving abstract and clean federation. SEP
introduces the following methods to determine network
parameters for inter-domain virtual link:
a) Inter-GK negotiation.

GKs manage inter-domain network resources, and GKs on
both side of the inter-domain link negotiate parameters
through common-API requests and replies.

b) Assigned by the SEP core
The SEP core or a broker manages inter-domain-network
resources, and assigns them into the common-API request.
Virtual links between destination domains has to be de-
fined with this method, because the GK of source domain
does not have information (parameters, etc.) of inter-
domain network between destination domains.

SEP’s inter-domain link management helps achieving single
inter-domain interface; developer can create inter-domain
links with single interface of the GW, regardless of destina-
tion domain, and SEP can create and optimize them freely.

C. Transparent Tunneling using Syntactic Extension
‘Extension’ parts are introduced to the common slice defini-
tion to enable extensibility of capabilities. Syntactic exten-
sion fields can contain any new information. GKs and the
SEP core do not check contents and forwards information to
destination domains. Extension fields do not negatively
influence SEP execution; if destination domains cannot
handle extensions, they ignore extensions safely.

V. IMPLEMENTATION
A. Overview of the Experimental System
The proposed federation architecture is implemented in a
real virtual-network environment spread across multiple
continents (Figure 2). Three domains are connected by SEP:
one ProtoGENI domain (located at The University of Utah,
USA) and two VNode domains (located in Tokyo, Japan).
 A federation-less federation method [19][20] is used by
the source domain to describe and submit resource specifi-
cations of destination domains.

B. Control Planes
Control-plane is implemented by three GKs and the SEP
core, represented by VMs. The SEP core delivers a com-
mon-API request to destination domains, and also combines
common-API replies (execution results, etc) returned from
destination domains into a single common-API reply, which
realizes single inter-domain interface. Although the SEP
specification enables common-API requests between the
SEP core and destination GKs to be executed concurrently,
the current implementation executes them sequentially.

C. Data Planes
Each VNode domain has GW; L2 switch with a network
processor card to accommodate inter-domain virtual-link
VLANs to VNode virtual links (GREs) [21]. GW is con-
trolled from GK by CLI.
 In current implementation, ProtoGENI side GW is omit-
ted, and GWs on VNode domains are connected to the
ProtoGENI's internal network directly. Because VNode-side
GWs have VLAN-translation functionality and can accom-
modate ProtoGENI’s virtual-link VLANs directly, no other
VLAN-translation mechanism (GW) is required on the

ProtoGENI side. VLAN numbers used for ProtoGENI
virtual links are extracted from the ProtoGENI slice-
creation result (manifest), and then transmitted through the
common-API command and set to the VNode-side GW.

D. Inter-Domain Virtual-Link Management
Inter-VNode virtual links created in ProtoGENI-to-VNode
federation using method b) of subsection IV-B is discussed.
Inter-VNode virtual links support MAC encapsulated non-
IP (any-frame) packets [19]. The following method allows
SEP to create non-IP virtual links when a slice-creation is
requested from the ProtoGENI domain, which has no in-
formation about inter-VNode non-IP network.
 The SEP core maintains a pool of pre-allocated VLANs
and MAC addresses to be assigned to VNode GWs. When a
common-API slice-creation request is first issued by the
ProtoGENI-side GK, no network parameters are assigned
for inter-VNode virtual links. The SEP core assigns VLAN
numbers and MAC addresses into the common-API request.

VI. EXPERIMENTAL RESULTS
Evaluation results are discussed focusing on SEP’s features
and efficiency. Extensibility of capabilities has been imple-
mented but not yet tested, because federation between
VNode and ProtoGENI does not require it.

A. Single Interface Federation
Single developer interface was verified by submitting slice
from both domains with their slice-creation API.
 For ProtoGENI-to-VNode federation, three-domain-slice
creation, between a ProtoGENI domain and two VNode
domains, was achieved. Three domains, each has three to
five virtual nodes, were connected by inter-domain virtual
links each other. VNode GW accommodated ProtoGENI’s
virtual-link VLANs, as well as the inter-VNode virtual link.
 Single inter-domain interface for control plane was
verified; domains were able to send and receive federation
commands through their GK. However, in current imple-
mentation, single inter-domain interface for data plane was
achieved only on VNode domains. In VNode domains, all
inter-domain virtual links can be connected to the GWs
regardless of destination domain. On the other hand, in the
ProtoGENI domain, developer has to specify a device
(VNode GW) corresponds to virtual link’s destination
domain, because ProtoGENI-side GW is omitted.
 VNode-to-ProtoGENI slice creation was also conducted
between a VNode domain and a ProtoGENI domain (based
on common API V1.0 [22]). Three virtual nodes per each

Slice Design

GK

SEP

GW

Trans
Pacific
VLANs

VNode
Control Planes

VNode Data Plane

First VNode Domain

PN
PN

PN
PN

Physical Links

Management
Servers

GRE

SEP
core

GK

Utah AM

PN
PN

PN
PN

Inter-GK
Control Plane

Common
API

Developer

Cross-domain
Data Plane VLAN

VN
VN

VN
VNGK

GW
PN

PN
PN

PN

Inter-VNode
Cross-domain
Data Plane VLAN

Japan USA

University of Utah

ProtoGENI-
side GK

Tokyo

Physical Links

Physical Links
Cross-domain
Data Plane VLANs

AM API

GK: Gatekeeper
SEP: Slice Exchange Point
GW: Federation Gateway

VN: Virtual Node
PN: Physical Node
AM: Aggregate Manager

Common
API

VNode
API

VNode
API

Second VNode Domain
Management
Servers

ProtoGENI

Figure 2 Experimental System Structure

domain and one inter-domain virtual link were created.

B. Infrastructure Neutrality
Infrastructure neutrality was verified by creating slice
between heterogeneous domains; ProtoGENI and VNode.
 Node hierarchy difference was converted, e.g., during
ProtoGENI-to-VNode federation, VNode-side GKs con-
verted ProtoGENI’s one-level node specifications into
VNode’s two-level node specifications, by adding a hierar-
chy to virtual nodes. Command granularity was also con-
verted. The ProtoGENI side GK translated a ‘CreateSliver’
command in ProtoGENI domain into two common-API
commands: ‘CreateSlice’ and ‘Run’, and vise versa.

C. Clean and Abstract Federation
Even though VNode and ProtoGENI have different sub-
strate implementation, clean and abstract federation allows
SEP to creating virtual links between them.
 For virtual links between ProtoGENI and VNode,
VNode-side GWs converted ProtoGENI’s VLANs into
VNode’s GREs (subsection V-C). For inter-VNode virtual
link, SEP core maintained link parameters set to GWs, and
non-IP virtual link was created even though source domain
(ProtoGENI) did not provide them (subsection V-D).
 Virtual nodes and links on VNode domains are abstract-
ed, on the other hand, those on ProtoGENI are not fully
abstracted, e.g., virtual links depend on substrate VLANs.
Abstract federation enabled developer to create slice be-
tween domains with different resource abstraction method.

D. SEP’s Efficiency
SEP's efficiency was investigated using common-API
execution sequence extracted from SEP’s log in the case of
three-domain ProtoGENI-to-VNode federation. SEP took
an average of 8 minutes 3 seconds (seven results with 27-
second standard deviation) to create and start remote do-
main part of the slice, i.e., from the source GK receives
slice creation request until slice startup complete. If VM
startup time (7 minutes 8 seconds) which is inevitable is
excluded (it could be reduced by parallel VM startup, as
SEP core submits a common-API command to each domain
sequentially in current implementation), it took about 55
seconds to create the slice. SEP is able to provisioning
resources globally in reasonable time (around one minute).

VII. CONCLUSION
Slice-exchange-point (SEP) architecture was described that
supports federation between heterogeneous virtualization
platforms. SEP’s features and functions to achieve them
were discussed in detail.
 Command and resource-specification translation func-
tions achieve infrastructure neutrality and single developer
interface; enabling developers to manage whole federated
slices with their familiar control framework. Resource-
specification translation and data-plane conversion, along
with inter-domain virtual-link management, achieve ab-
stract and clean federation; enabling virtualization plat-
forms to create virtual resources without constraints. Inter-
domain virtual-link management function also realizes
single inter-domain interface; inter-domain virtual links to
different domains can be created through the SEP interface..
 SEP was implemented between three domains of real
virtualization platforms: two VNode domains and a
ProtoGENI domain. Federation between multiple virtualiza-
tion platforms was tested, and the proposed SEP architec-

ture was confirmed to achieve multi-way federation be-
tween multiple heterogeneous domains.

ACKNOWLEDGMENTS
We thank Nozomu Nishinaga from the National Institute of
Information and Communications Technology (NICT) and Robert
Ricci and Gary Wong from The University of Utah for setting up
the federation node. Part of the research results is an outcome of
the Advanced Network Virtualization Platform Project B funded
by NICT and experiments using JGN-X testbed deployed by
NICT.

REFERENCES
[1] Okamoto, S., et al., “Design of Network Slice Exchange for

Bridging Future Internet Testbeds”, 18th OptoElectronics and
Communications Conference (OECC/PS 2013), June-July 2013

[2] Federation Architecture and Common API / Common Slice
Definition, http://nvlab.nakao-lab.org/Common_API_V2.0.pdf

[3] Nakao, A., et al., “Advanced Network Virtualization: Defini-
tion, Benefits, Applications, and Technical Challenges, January
2012”, NVSG White Paper v.1.0, https://nvlab.nakao-
lab.org/nv-study-group-white-paper.v1.0.pdf

[4] Berman, M., et al., “GENI: A federated testbed for innova-
tive network experiments”, Computer Networks, Special Issue
on Future Internet Testbeds, 2014.

[5] Ricci, R., et al., “Designing a Federated Testbed as a Dis-
tributed System”, TridentCom 2012, June 2012.

[6] Goldszmidt, G., Yemini, Y., “Distributed management by
delegation”, 15th International Conference on Distributed
Computing Systems, May-June 1995

[7] Thorpe, S. R., et al., “G-lambda and EnLIGHTened:
wrapped in middleware co-allocating compute and network
resources across Japan and the US”, 1st International Confer-
ence on Networks for Grid Applications, October 2007.

[8] Rochwerger, B., et al., “The reservoir model and architecture
for open federated cloud computing”, IBM Journal of Research
and Development 53-4, 2009.

[9] GEC 14 Slice Around the World Demo,
http://groups.geni.net/geni/wiki/SAW

[10] OGF NSI, “Network Services Framework v1.0”, GFD.173
[11] “Common YANG Data Types”, RFC6021
[12] OpenStack API, http://api.openstack.org/
[13] Peterson, L., Ricci, R., Falk, A., and Chase, J., “Slice-based

Federation Architecture, Version 2.0”, http://git.planet-
lab.org/?p=sfa.git;a=blob;f=docs/sfa.pdf, July 2010.

[14] Wahle, S., et al., “Conceptual Design and Use Cases for a
FIRE Resource Federation Framework”, in Tselentis, G., et al.
ed., “Towards the Future Internet”, IOS Press, 2010.

[15] Augé, J., et al., “Tools to Foster a Global Federation of
Testbeds”, Computer Networks, Special Issue on Future Inter-
net Testbeds, 2014.

[16] Proto-SDX Demo and Background, http://groups.geni.net/
geni/attachment/wiki/GEC19Agenda/Plenary/2014-03-18%20P
roto-SDX%20Demo%20and%20Background.pdf

[17] Gupta, A., et al., “SDX: A Software Defined Internet Ex-
change”, SIGCOMM 2014, August 2014.

[18] GENI Aggregate Manager API,
http://groups.geni.net/geni/wiki/GAPI_AM_API

[19] Kanada, Y., et al., “Federation-less-federation of Network-
virtualization Platforms”, IFIP/IEEE International Symposium
on Integrated Network Management (IM 2013), May 2013.

[20] Kanada, Y., and Tarui, T., “Federation-less-federation of
ProtoGENI and VNode”, 29th International Conference on In-
formation Networking, January 2015.

[21] Kanada, Y., et al., “High-performance Network Accommo-
dation into Slices and In-slice Switching Using A Type of Vir-
tualization Node”, 2nd International Conference on Advanced
Communications and Computation, October 2012.

[22] Federation Architecture and Sequence,http://groups.geni.net/
geni/attachment/wiki/GEC18Agenda/FedToolSupport/Federatio
n_Architecture_and_Sequence20130829r1.pdf

