
An extended version of the paper accepted for APNOMS ’01

1

Diffserv Policies and Their Combinations
in a Policy Server*

Yasusi Kanada
IP Network Research Center, Hitachi, Ltd.

Totsuka-ku Yoshida-cho 292, Yokohama 244-0817, Japan
kanada@crl.hitachi.co.jp

Brian J. O’Keefe
Hewlett-Packard Company

bokeefe@cnd.hp.com

ABSTRACT
In policy-based networking, policies sometimes have to be com-
bined and applied in cooperation to represent such programmable
and customizable network functions as Diffserv. For a policy
server called PolicyXpert, we have designed and implemented
three types of policies and three types of virtual flow labels
(VFLs) to connect the policy rules. The policy combination en-
ables the representation of complex Diffserv policies. Policy
combination also allows sub-classing of DSCP-based service
classes, and the separation of service and subscriber policies. The
careful design of Diffserv policies has enabled simple Diffserv
policies to be represented in a simple form.

Keywords
Policy-based networking, Policy server, Differentiated Services
(Diffserv), Policy combination, Virtual flow label.

1. INTRODUCTION
Policy-based network management (PBNM) is a promising tech-
nology because it provides the following benefits. Firstly, it is
easy to create, to modify, and to delete policies dynamically with-
out interfering other policies because they are rule-based. A rule
is a fine-grained module that can be added, deleted, or modified
independent of other rules. Secondly, the amount of network
configuration task can be reduced by using policies because one
policy can be used for policy targets that are of various types, i.e.,
network nodes or interfaces, and that have been developed by a
variety of vendors. Thirdly, heterogeneous networks can be
managed according to a unified set of policies that follows the
IETF (Internet Engineering Task Force) standards. Policies are
modeled by the Policy Framework Working Group of the IETF
[Moo 01, Sni 00]. A protocol called COPS (Common Open Pol-
icy Services) [Dur 00], its usage called COPS-RSVP [Her 00] and
COPS-PR [Cha 01], and data formats conveyed by COPS-PR,
which are called PIBs (policy information bases), are also stan-
dardized by the IETF.

In programmable and customizable networks, two or more policies
often work in cooperation. For example, in a QoS-assured net-
work service such as Diffserv (Differentiated Services) [Car 98,
Ber 99], packet flows from service subscribers are classified and
policed (i.e., limited to a certain bandwidth) at an edge router, and
queued and scheduled in each router that the flow passes through.
Thus, policies for classification, policing, and queuing/scheduling
must cooperate to assure QoS. If the service is typical Diffserv,

* An extended abstract of this paper is available as a poster paper
[Kan 01b]. This paper is mostly identical to a SIG paper [Kan 02].

the policy for classification specifies the class or the DSCP
(Diffserv Code Points) [Nic 98] of the flow, and the policy for
queuing/scheduling specifies the testing of the DSCPs to deter-
mine the algorithms and parameters for queuing and scheduling
required by packets in that class. These policies can be regarded
as components of a network-wide QoS policy. Although DSCPs
can be used for implicit cooperation of policies, other services
may require explicit cooperation.

Lupu and Sloman [Lup 99] developed methods for handling policy
conflicts. Conflicts are types of relationships between policies.
They are usually negative relationships because they cause incon-
sistencies among policies and because they accidentally and im-
plicitly occur. In contrast, the concept of policy combination
[Kan 01a] was developed for explicitly specifying a positive rela-
tionship between policies [Kan 00a, Kan 00b]. Conventionally, no
methods for combining policies explicitly have been developed.

Policies can be complex as explained above. If they are complex,
they should be built from building-block policies. The structure of
the combined policy may not be very simple. However, a simple
policy should be simple; i.e., if the nature of a policy is simple, it
should be represented in a simple form.

This paper explains the three types of provisioning Diffserv poli-
cies and the methods and application cases of policy combination
in a policy server (PDP) called OpenView PolicyXpert and
JP1/PolicyXpert1. The goal of the policy design in this policy
server is to enable both policy combination in complex policies
and simple representation in simple policies using a concise set of
policies. Policy and system architectures of PolicyXpert over-
viewed in Section 2, and the three types of Diffserv policies are
explained in Section 3. The method of policy combination in
PolicyXpert is explained in Section 4, and it application cases are
explained in Section 5.

2. POLICY AND SYSTEM ARCHITEC-
TURES

A policy is a sequence of condition-action rules in PolicyXpert.
An example of a condition-action rule is as follows:

if (Source_IP_address is 192.168.1.1) { -- condition
DSCP = 10; -- action

}.

This rule marks DSCP 10 on (the packets in) a flow from IP ad-

1 OpenView and PolicyXpert are trademarks of Hewlett-Packard
Company. JP1 is a trademark of Hitachi, Ltd. PolicyXpert Ver-
sion 2.0 was developed jointly by Hewlett-Packard and Hitachi.

2

dress 192.168.1.1.

A policy P may be represented as:
P = {rule1, rule2, … }.

The conditions for applying rules 1, 2, … are evaluated from top
to bottom, and only the action which corresponds to the first con-
dition to be matched is taken. Policies in this system mostly con-
forms with the IETF Policy Core Information Model (PCIM)
[Moo 01].

The outline of Poli-
cyXpert architecture is
illustrated in Figure 1.
Policies are defined by
the administrator or
operators using the
console. They are
inputted to the server
(PDP) and stored into
the policy database.
They are deployed to
proxy or embedded
policy agents (PEP)
and the network de-
vices are configured
by the agents. The
server also manages
network interfaces of the devices by using the information man-
aged and sent by the agents.

3. THREE TYPES OF DIFFSERV POLI-
CIES

There are three policy types for Diffserv in PolicyXpert 2.0
[HP 00] and later versions. See Figure 2.

1. Traffic Classifier (CL) Policy
 A CL Policy classifies (the packets in) packet flows and assigns

labels called CIDs (Classifier Identifiers. See Section 4.1). A
CL Policy is usually deployed to edge or border interfaces (i.e.,
interfaces that are connected to points outside the Diffserv do-
main) and applies to inbound traffic.

2. Traffic Conditioner (TC) Policy
 A TC Policy meters, marks, and/or drops packets absolutely

(i.e., unconditionally). TC Policies, too, are usually deployed
to edge or border interfaces and apply to inbound traffic.

3. Queue Control (QC) Policy
 A QC Policy queues and schedules, or drops packets randomly

(by using the WRED or a similar algorithm). A QC Policy is
usually deployed to core interfaces (i.e., interfaces that are
connected to other interfaces within the Diffserv domain) and
applies to outbound traffic. A QC Policy rule can be regarded
as (a model of) a queue or scheduler; i.e., a traffic control ob-
ject.

TC and QC Policies are natural representation of Diffserv func-
tions as policies; i.e., collections of condition-action rules. So the
Diffserv policies mostly conform with the IETF Diffserv models,

i.e., the conceptual router model [Ber 01], Diffserv MIB [Bak 01]
and PIB [Fin 01], and QoS Policy Information Model (QPIM)
[Sni 00]. In this policy server, only one instance of a policy type
can be deployed at one network interface.

Examples of these policies are given below. Although a GUI is
used for creating and editing policies in PolicyXpert, the policies
are described in a C-like language here for concise description.1

1. Example of a CL Policy rule
 The following rule (1.1) assigns the CID value "EF_CID" to

flows come from IP address 192.168.1.1.
 if (Source_IP_address is 192.168.1.1) { CID = "EF_CID"; }.

(1.1)
 Marking a CID is the only function of the CL Policy, and it is

usually used as a component of a larger policy.

2. Examples of TC Policy rules
 A simple (stand-alone) rule

 The following rule (2.1) is a simple TC Policy rule and marks
DSCP 10 on packets.
 if (Source_IP_address is 192.168.1.1) { DSCP = 10; }.

(2.1)
 This rule can be used as a stand-alone rule; i.e., in a given de-

vice, no other rule may be applied in cooperation with this rule.
 A more complex rule

 Rule (2.2), shown below, is applied to flows to which the CID
value “EF_CID” has been attached to.
 if (CID is "EF_CID") {

if (InformationRate <= 10 Mbps) {
DSCP = "EF"; -- marking

} else {
Discard; -- absolute drop

};

1 However, no such language is currently supported.

Network Device

Console

PolicyXpert
Server (PDP)

Proxy agent
(PEP)

Network Device

Embedded
agent (PEP)

COPS

COPSCOPS

CLI, etc.

Policies

Policy
DB

Figure 1: Architecture of PolicyXpert

Diffserv domain

Edge interface
Core interface

Inbound traffic
Outbound traffic

TC Policy QC Policy

Inbound traffic
Outbound traffic

TC Policy and
QC Policy

Edge routers Core
routers

(or QC Policy
 only)

Figure 2: Diffserv policy types and their deployment

3

 }. (2.2)

 This rule may thus be combined with rule (2.1). Rule (2.2)
meters the traffic and marks the DSCP “EF” on the packets in
the first 10 Mbps of the traffic, and discards other packets.1

This rule can be used for an EF (Expedited Forwarding) service
[Jac 99] of Diffserv, and it must be combined with a TC Policy
rule such as rule (1.1).

3. Examples of QC Policy rules
 A simple (stand-alone) rule

 The following rule (3.1) applies a bounded priority queuing
algorithm to the queuing and scheduling of packets with a
DSCP of "EF".2

 if (DSCP is "EF") {
SchedulingAlgorithm = "B-PQ";

-- bounded priority queuing
Priority = 6; -- means “high”
ShapingRate = 20 Mbps;

}. (3.1)

 The traffic is then shaped to 20 Mbps. Rule (3.1) represent a
queue that is connected to a priority scheduler that is not given
as a rule.
 A more complex rule

 Rule (3.2), shown below, represents a scheduling queue, and
this rule specifies three discard levels; newly coming packets
with a DSCP of "AF11" are discarded only when the queue is
filled with 200 packets (100%), while newly coming packets
with a DSCP of "AF12" are discarded when the queue contains
140 (70%) or more packets and newly coming packets with a
DSCP of "AF13" are discarded when the queue contains 100
(50%) or more packets.
 if (DSCP is ["AF11", "AF12", "AF13"]) {

SchedulingAlgorithm = "A-BW";
Max_Queue_Size = 200 packets;
CommittedRate = 64 kbps;

-- assured minimum rate
DiscardAlgorithm = “Deterministic Discard”;
if (DSCP is "AF11") {

DiscardLevel = 100%;
-- allowed to use whole queue

} elsif (DSCP is "AF12") {
DiscardLevel = 70%;

-- allowed to use 70% of the queue
} elsif (DSCP is "AF13") {

DiscardLevel = 50%; };
-- allowed to use 50% of the queue

1 Under PolicyXpert, if two or more CL Policy rules specify the
CID value "EF_CID", the information rate of either of these flows
can reach 10 Mbps, and the sum of these flows may exceed 10
Mbps. This is because rule (2.2) is conceptually copied before
combination with other CL Policy rules, so that the original rule
(2.2) works as a template. A more detailed description of the se-
mantics is given in the PolicyXpert Users Guide [HP 00].
2 The actual value of DSCP is a 6-bit number. However, a name
can be given by using a parameter group in PolicyXpert.

}.

“Deterministic Discard” is specified as the discard algorithm.
This specifies a non-random algorithm for dropping packets.
This rule can be used for an AF (Assured Forwarding) service
[Hei 99] of Diffserv. A random discard method such as the
weighted random early discard (WRED) can be specified in-
stead of deterministic discard too. The reason that the all the
discard levels are specified in a rule is that rule (3.2) also rep-
resents a queue; i.e., the discard levels are specified for a single
queue. If they are separated into different rules, they specify
different queues.

Example of a rule that represent a scheduler will be shown in Sec-
tion 5.2.

4. METHOD OF POLICY COMBINATION
To combine policies, both the dataflow and the control flow be-
tween policies must be specified.

4.1 Specification of dataflow between combined policies
A specific dataflow of packets can be detected by using flow la-
bels [Kan 00b]. Flow labels are labels attached to a packet or
flow. They are used for selecting a rule from a policy. Flow la-
bels are of two types (illustrated in Figure 3).
1) Real flow labels: labels written inside the packet. A DSCP is

an example of a real flow label.
2) Virtual flow labels (VFLs): labels external to the packet.
A real flow label is conveyed by packets, so the two policies to
cooperate can exist in different network nodes. However, a VFL
is not conveyed by packets themselves, so the policies to cooper-
ate must exist in the same network node unless the virtual tag
value is conveyed by some other means, such as wavelength,
physical location, and so on. We focus on the usage of VFLs be-
low.

64
 Packet

1000

 Packet

(1) Real flow label (2) Virtual flow label
Figure 3: Two types of flow labels

Dataflows between policies are specified by defining and using
VFL values in the rules of the policies. If Policy 2 is executed
after Policy 1 (illustrated in Figure 4), a VFL can be defined by
one or more of the rules (in actions) of Policy 1, and the VFL can
be referred to in one or more of the rules (in conditions) of Pol-
icy 2.3

3 Two rules in Policy 2 should not be combined to rules in Pol-
icy 1 in reversed order. Otherwise, difficult semantic problems
may occur. This means, when there are rules 1a and 1b in Pol-
icy 1 and rules 2a and 2b in Policy 2, and rule 1a precedes 1b, rule
2a precedes rule 2b, rule 1a assigns VFL a, rule 2b assigns VFL b,
then if rule 2a refers to VFL b, rule 2b should not refer to VFL a
because the reference order is the reversed assignment order. If

4

VFLs in PolicyXpert are classified into three categories:
1. Classifier ID (CID): A CID combines rules in CL and TC

policies. For example, rules (1.1) and (1.2) in Section 3 are
combined by the CID "EF_CID".

2. Traffic ID (TID): A TID combines rules in a TC Policy.
3. Queue Set ID (QID): A QID combines rules in a QC Policy.

An example of this combination is shown in Section 5.2.
Policy combinations created by these VFLs are illustrated in Fig-
ure 5. A character string is used for VFL values in PolicyXpert.
The string values are usually translated into other type of data,
such as integral values by a policy agent (PEP). TIDs and QIDs
only combine rules within a single TC or QC Policy because there
is only one instance of a TC or QC Policy for an interface.

VFL rule

rule

...Policy 1 Policy 2
VFL

rule

rule

...

Figure 4: Connection of policies using VFLs

CL TC
CID

 (1) Classifier Identifier

TIDTC

QIDQC

(2) Traffic Identifier (3) Queue Set Identifier
Figure 5: Three types of VFLs

4.2 Specification of control flow between combined
policies

Flow of control can be explicitly specified by using a properly-
defined policy language [Kan 00b]. For example, if CL1, TC1,
and QC1 are policies, then the following declaration specifies a
flow of control:

order CL1 -> TC1 -> QC1.

However, the order of policy evaluation can be predefined as part
of the definition of a specific policy. The order of CL, TC and QC
Policies is predefined as shown in Figure 6; i.e., a CL Policy can
be followed by a TC Policy, a TC Policy can be followed by a TC
or QC Policy, and a QC Policy can be followed by a QC Policy or
no policy.

CL TC QC

continue evaluation continue evaluation

Figure 6: Control flow between Diffserv policies

There is nondeterminacy (i.e., there are alternatives) in the execu-
tion order of TC and QC Policies. To resolve this nondetermi-
nacy, “continue evaluation” must be explicitly specified when a
policy evaluation is repeated. For example, the following rule in a
QC Policy is combined with another rule (that tests the QID

rule 2a refers to VFL a, rule 2b can refer to VFL b because the
orders coincide.

“shape2”) in the QC Policy.

if (DSCP is "AF11" or "AF12" or "AF13") {
SchedulingAlgorithm = "A-BW";
MaxQueueSize = 200 packets;
CommittedRate = 64 kbps;
QID = "shape2";
Continue evaluation;

}.

If no “continue evaluation” is specified, the rule is not followed by
another QC Policy rule.

5. APPLICATION OF POLICY COMBI-
NATION

Two cases of the application of policy combination in PolicyXpert
are explained here.

5.1 Separation of subscriber and service policies
Both network services and service subscribers, i.e., end customers,
can be managed by using policies. Policies for service subscribers
can be separated from the service policies by using CL and TC
Policies as well as CIDs (shown in Figure 7).

In a Diffserv network, three service classes, i.e., gold, silver, and
best-effort classes, can be defined. The same DSCP can be used
for both gold and silver classes, but the policing rates for them,
which are specified by TC Policy rules, can be different; e.g., a
gold traffic is policed to 1 Mbps, but a silver traffic is policed to
128 kbps. Then, two different DSCPs are used, and three different
CIDs, "G", "S", and "B" (which represent subclasses of DSCP-
based classes), are used for gold, silver, and best-effort classes.
Service properties can be defined by the network administrator in
a service policy, which is implemented by using a TC Policy; each
class of services is specified by a TC Policy rule. Subscriber
properties can be defined by the network operators in subscriber
policies, which are implemented by using CL Policies; each sub-
scriber is specified by a CL Policy rule. CIDs are used for map-
ping or aggregating subscribers into service classes. The TC
Policy can then be deployed to all inbound edge interfaces of the
Diffserv network. Each CL Policy can be deployed to an edge
interface and contain rules connected to the service policy rules in
the TC Policy by CIDs. In Figure 7, CL Policies 1, 2, and 3
(subscriber policies) are defined, and they are deployed to three
edge interfaces. There is only one TC Policy (service policy), and
it is deployed to the same interfaces as the CL Policies.

When a subscriber is added or removed, the network operator can
modify only the relevant CL Policy and need not modify the
service policy. Particularly, multiple service classes that share a
DSCP are separated by using CIDs. This separation of subscriber
and service policies clearly separates the task of the network ad-
ministrator from the task of the network operator. Subscriber and
service policies are separated by using VFLs, but the policies co-
operates following a uniform policy semantics.

5.2 Hierarchical shapers and policers
In multi-service networks, hierarchical schedulers and shapers can
be used for harmonizing various types of traffic. These functions
can be represented by using QIDs and a QC Policy. Each QC

5

Policy rule represents a simple queuing or scheduling method. QC
Policy rules can be combined by QIDs to represent a complex
queuing/scheduling method.

For example, a hierarchical shaper can be outlined as shown in
Figure 8. This QC Policy consists of n + 1 rules. Rules Q1, …,
Qn receive input traffic, and output traffic shaped at a maximum
of 64 kbps by using a bandwidth fair queuing (A-BW1) method.
Here, the input traffic is assumed to have the QID value "" (empty
string), the output traffic has the QID value "Shape2", and
“continue evaluation” is specified in each of rules Q1, …, Qn. A-
BW can be mapped to an appropriate scheduling (queuing)
method implemented at the given network node. Rule Sc inputs
the aggregation of the shaped traffic from Q1, …, Qn,2 and out-
puts traffic at a maximum of 10 Mbps by using a bounded priority
queuing (B-PQ) method.

Each of rules Q1, …, Qn models a queue, and rule Sc models an
A-BW scheduler that is followed by a B-PQ scheduler that is not
given explicitly. Other scheduling methods, i.e., strict priority
queuing (S-PQ) and per-flow bandwidth fair queuing (P-BW), can
also be specified in a QC Policy rule.

A hierarchical policer can be represented in a similar way to the
above shaper, but the details are omitted here.

Note that, although a hierarchical shaping, scheduling, or policing
policy is complex, a simpler function, such as a non-hierarchical

1 A-BW is an abbreviation of “aggregated bandwidth fair queu-
ing”. “Aggregated” means that this scheduling algorithm distin-
guishes aggregated flows (by using DSCPs) but does not
distinguish microflows. This is different from the other bandwidth
fair queuing algorithm called “per-flow bandwidth fair queuing”
(P-BW), which distinguishes microflows and can be used for
Packeteer’s PacketShaperTM.
2 Rule Sc is shared among rules Q1, …, Qn, and is not copied; i.e.,
all the queues that are represented by Q1, …, Qn are connected to
the same scheduler that is represented by Sc. The semantics of a
QID differ in this way from those of a CID as described in Sec-
tion 3.

shaping, scheduling, or policing function, or marking function, can
be represented by only a single rule.

premium rule

gold rule

best effort rule

...

TC PolicyCL Policy 1

rule for subscriber 1

rule for subscriber n

...

CL Policy 2
rule for subscriber 1’

rule for subscriber n’

... Diffserv network

CL Policy 3
rule for subscriber 1”

rule for subscriber n”

...

Subscriber
policies

Service
policy

Inbound edge interfaces

CIDs

CIDs

CIDs

CID = “P”

CID = “G”

CID = “B”

Figure 7: Separation of subscriber and service policies

SchAlg = “A-BW”
CommittedRate = 64 kbps

SchAlg = “A-BW”
CommittedRate = 64 kbps

SchAlg = “B-PQ”
Priority = “high”
ShapingRate = 10 Mbps

QID = "" QID = “Shape2”
Continue evaluation

Rule Q1

Rule Qn

Rule Sc
...

DSCP =
"AF2"

DSCP =
"AF1"

S = { Q1: if (QID is "" && DSCP is "AF1") {
Scheduling_Algorithm = "A-BW";
Committed_Rate = 64 kbps;
QID = "Shape2";
Enqueue;

},
…,

Qn: if (QID is "" && DSCP is "AF2") {
Scheduling_Algorithm = "A-BW";
Committed _Rate = 64 kbps;
QID = "Shape2";
Enqueue;

},

Sc: if (QID is "Shape2") {
Scheduing_Algorithm = "B-PQ";
Priority = "high";
Shaping_Rate = 10 Mbps;
QID = "Outgoing";
Enqueue;

} }
Figure 8: A hierarchical shaper

6

6. CONCLUSION
Policy combination is required to represent programmable and
customizable network functions such as those provided by Diff-
serv. In PolicyXpert, policies of three types (i.e., CL, TC, and
QC) and VFLs of three types (i.e., CIDs, TIDs, and QIDs), for
connecting policy rules, are defined for Diffserv. The policy
combination enables the representation of complex Diffserv poli-
cies. TC and QC Policies, and TIDs and QIDs can be used in
constructing such representations. Policy combination in Poli-
cyXpert also allows sub-classing of DSCP-based service classes
and the separation of service and subscriber policies. CL and TC
Policies, and CIDs are available for this purpose. The careful
design of Diffserv policies has enabled simple Diffserv policies to
be represented in a simple form.

Future work on PolicyXpert will include the refinement of the
semantics of policy combination, especially the evaluation order
of rules that refers to VFLs.

ACKNOWLEDGMENT
We thank Toshio Shimojou of the Enterprise Server Division,
Hitachi, Ltd., and Rick Roeling of the Hewlett-Packard Company
for discussing on the policy design of PolicyXpert with us.

REFERENCES
[Bak 01] Baker, F., Chan, K., and Smith, A., “Management In-

formation Base for the Differentiated Services Architecture”,
draft-ietf-diffserv-mib-09.txt, Internet Draft, IETF, March
2001.

[Ber 99] Bernet, Y., Binder, J., Blake, S., Carlson, M., Carpen-
ter, B. E., Keshav, S., Ohlman, B, Verma, D., Wang, Z., and
Weiss, W., “A Framework for Differentiated Services”, draft-
ietf-diffserv-framework-02.txt, Internet Draft, IETF, February
1999.

[Ber 01] Bernet, Y., Blake, S., Grossman, D., and Smith, A.,
“An Informal Management Model for Diffserv Routers”, draft-
ietf-diffserv-model-06.txt, Internet Draft, IETF, February
2001.

[Car 98] Carlson, M., Weiss, W., Blake, S., Wang, Z., Black,
D., and Davies, E., “An Architecture for Differentiated Serv-
ices”, RFC 2475, IETF, December 1998.

[Cha 01] Chan, K. H., Durham, D., Gai, S., Herzog, S.,
McCloghrie, K., Reichmeyer, F., Seligson, J., Smith, A., and
Yavatkar, R., “COPS Usage for Policy Provisioning (COPS-
PR)”, RFC 3084, IETF, March 2001.

[Dur 00] Durham, D. (ed.), Boyle, J., Cohen, R., Herzog, S.,
Rajan, R., and Sastry, A., “The COPS (Common Open Policy
Service) Protocol”, RFC 2741, IETF, January 2000.

[Fin 01] Fine, M., McCloghrie, K., Seligson, J., Chan, K., Hahn,
S., Smith, A., and Reichmeyer, F., “Differentiated Services
Quality of Service Policy Information Base”, draft-ietf-
diffserv-pib-03.txt, Internet Draft, IETF, March 2000.

[Hei 99] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski,
“Assured Forwarding PHB Group”, RFC 2597, June 1999.

[Her 00] Herzog, S ., ed., Boyle, J., Cohen, R., Durham, D.,
Rajan, R., and Sastry, A., “COPS usage for RSVP”, RFC
2749, IETF, January 2000.

[HP 00] HP OpenView PolicyXpert 2.0 Users Guide, Edition 1,
Hewlett-Packard, October 2000.

[Jac 99] V. Jacobson, K. Nichols, and K. Poduri, “An Expedited
Forwarding PHB”, RFC 2598, June 1999.

[Kan 00a] Kanada, Y., “A Representation of Network Node QoS
Control Policies Using Rule-based Building Blocks”, Interna-
tional Workshop on Quality of Service 2000 (IWQoS 2000),
pp. 161–163, June 2000.

[Kan 00b] Kanada, Y., “Two Rule-based Building-block Archi-
tectures for Policy-based Network Control”, 2nd International
Working Conference on Active Networks (IWAN 2000), Lec-
ture Notes in Computer Science, No. 1942, pp. 195–210,
Springer, October 2000.

[Kan 01a] Kanada, Y., “Taxonomy and Description of Policy
Combination Methods”, Workshop on Policies for Distributed
Systems and Networks (Policy 2001), Lecture Notes in Com-
puter Science, No. 1995, pp. 171–184, Springer, January 2001.

[Kan 01b] Kanada, Y., and O’Keefe, B. J., “Combination of
Diffserv Policies in OpenView/JP1 PolicyXpert”, 5th Asia-
Pacific Network Operations and Management Symposium
(APNOMS 2001).

[Kan 02] Kanada, Y., and O’Keefe, B. J., “Diffserv Policies and
Their Combinations in a Policy Server Called PolicyXpert”,
IEICE SIG on Information Networks & SIG on Network Sys-
tems, Technical Report, March 2002.

[Lup 99] Lupu, E., and Sloman, M., “Conflicts in Policy-based
Distributed Systems”, IEEE Trans. On Software Engineering,
Vol. 25, No. 6, pp. 852–869, 1999.

[Moo 01] Moore, B., Ellesson, E., Strassner, J., and Westerinen,
A., “Policy Framework Core Information Model — Version 1
Specification”, RFC 3060, IETF, February 2001.

[Nic 98] Nichols, K., Blake, S., Baker, F., and Black, D.,
“Definition of the Differentiated Services Field (DS Field) in
the IPv4 and IPv6 Headers”, RFC 2474, IETF, December
1998.

[Sni 00] Snir, Y., Ramberg, Y., Strassner, J., and Cohen, R.,
“Policy Framework QoS Information Model”, draft-ietf-
policy-qos-info-model-02.txt, Internet Draft, IETF, November
2000.

