
1

Policy Division and Fusion: Examples and A Method
– Or, Multiple Classifiers Considered Harmful –

Yasusi Kanada
IP Network Research Center, Research & Development Group, Hitachi, Ltd.

Totsuka-ku Yoshida-cho 292, Yokohama 244-0817, Japan
kanada@crl.hitachi.co.jp

Abstract

Because higher- and lower-level policies do not neces-
sarily correspond one-to-one, a higher-level network
policy may have to be translated into two or more lower-
level policies, and two or more cooperating higher-level
policies may have to be translated into one lower-level
policy. The former transformation is called a policy di-
vision, and the latter transformation is called a policy
fusion. These transformations can be performed me-
chanically under certain restricted conditions, as de-
scribed in this paper. In general, however, such
transformations are very complicated, and the restric-
tions cannot be eliminated completely. This is mainly due
to the existence of multiple packet classifiers in a set of
policies. This paper thus concludes that multiple classi-
fiers should not be introduced, if possible. Policy division
and fusion can be avoided in certain cases, but are
probably unavoidable in other cases. Given this, these
problems should be solved by introducing virtual flow
labels to remove harmful classifiers and conducting fur-
ther studies on policy division and fusion.

Keywords

Policy-based networking, Policy division, Policy fusion,
Program transformation, Packet classifier, Flow classifier,
Virtual flow label.

1. Introduction
Policy-based heterogeneous networks are (will be) con-
trolled and managed by using device-independent poli-
cies. The policies are managed by a policy server, and
must be deployed mechanically to network devices such
as routers. Policies deployed to devices must cooperate
with each other to accomplish required functions. For
example, in a Diffserv (Differentiated Services) [Ber 99]
network, there may be policies that mark a DSCP
(Diffserv Codepoint) [Nic 98] at the network edge and
queuing/scheduling policies in the network core, and these
policies must cooperate to maintain service-level agree-
ments (SLA). These policies deployed to devices can thus
be regarded as the building blocks of a higher-level policy
[Kan 00a][Kan 00b].

A policy server, or a proxy that mediates between the
policy server and the network devices, must translate the

policies mechanically into multi-vendor device configura-
tions. A policy consists of policy rules, which are if-then
rules (condition-and-action rules). In network devices
such as routers, functions such as QoS or access control
are configured by using command-line interfaces (CLIs).
Commands define conditions and actions; i.e., such device
functions are also controlled by using policies that consist
of device-level policy rules. For example, in a Cisco
router, conditions are defined by an access control list
(ACL) and referred to by an action command. Thus, the
policy server or proxy must translate higher-level (device-
independent) policies into lower-level (possibly device-
dependent) policies. This translation can be compared to
the compilation of programs written in languages such as
C++.

Both higher-level policies [Moo 00][Sni 00] and lower-
level policies [Str 00] are modeled by the Policy Frame-
work Working Group of the IETF (Internet Engineering
Task Force). A protocol for conveying lower-level poli-
cies, called the COPS (Common Open Policy Services)
protocol [Dur 00], was standardized by the Resource Al-
location Protocol (RAP) Working Group of the IETF. Its
extension for provisioning policies, which is called
COPS-PR [Cha 00], and policy information bases (PIBs)
(e.g., the framework PIB [Fin 00a] and the Diffserv PIB
[Fin 00b]) are both going to be standardized by the RAP
and other working groups of the IETF.1

Although policy translation can be compared to pro-
gram compilation, the process may be much more com-
plicated. The functions of lower-level policies do not
necessarily correspond to those of higher-level policies.
A higher-level policy may have to be translated into two
or more lower-level policies, and two or more higher-level
policies may have to be translated into one lower-level
policy. For example, a higher-level policy contains two
(cooperating) functions, but no lower-level policy may
contain both functions. In this case, the policy must be
divided into two; otherwise, it cannot be deployed to de-
vices. The translation process can thus be regarded as a
type of program transformation [Par 83].

1 Although the Policy Framework and RAP Working Groups of
the IETF deal with higher- and lower-level policies, they do not
deal with the translation process between them.



2

One reason that such non-straightforward correspon-
dences exist is that the functions of devices, especially
core routers, have become less flexible because they are
now built with specific hardware in order to meet per-
formance requirements. In the 1970s, routers were gen-
eral-purpose computers. Today, however, high-end
routers, such as the Cisco 12000 series, include hardware-
implemented routing engines and some of them include
hardware-implemented QoS or MPLS mechanisms. They
thus cannot be programmed as flexibly as general-purpose
computers. Therefore, an elaborate translation algorithm
may be required for such devices.

In this paper, the outlines of policy division and fusion
are defined, several typical examples are discussed, and a
transformation method is described.

2. Basics of Policy Division and Fusion
This section defines policy division and fusion, and out-
lines their functions.

2.1 Definitions
There are two types of transformations in translating
higher-level policies to lower-level policies.

1. Policy division: If a higher-level policy is transformed
into two or more lower-level policies, the transforma-
tion is called a policy
division.

2. Policy fusion: If two or
more higher-level poli-
cies are transformed into
a lower-level policy, the
transformation is called
a policy fusion.

A transformation may be a
combination of policy di-
visions and policy fusions;
i.e., a set of higher-level
policies may be trans-
formed into a set of lower-
level policies, but the func-
tions of one higher-level
policy may be separated
into two or more lower-
level policies and the func-
tions of two or more
higher-level policies may
be merged into one lower-
level policy. These trans-
formation types are illus-
trated in Figure 1.

2.2 Outline of policy division
We assume a higher-level policy divided into multiple
lower-level policies. Both the higher- and lower-level
policies have rules with conditions. A rule in the higher-
level policy must correspond to a rule in each of the
lower-level policies. For example, a rule in a higher-level
policy P,

P: if (Ci) {Ai1; …; Ain;}, (p)

where Ci is a condition and Ai1, …, Ain are sequences of
actions, is assumed to be translated into the following
rules in lower-level policies P1, …, Pn:

P1: if (Ci) {Ai1;}, (p1)
…,

Pn: if (Ci) {Ain;}. (pn)

The conditions of these rules are the same because actions
Ai1, …, Ain must be executed under the same condition.
There are several transformation conditions that must be
satisfied to make the above transformation correct. These
conditions are described in Sections 3 and 4 but are omit-
ted here for simplicity.

A list of the conditions associated with a policy rule
forms a classifier [Ber 99], which classifies the packet
flows that must be handled by the policy, as shown in
Figure 2. The conditions are evaluated sequentially and
at most one rule (action) is selected for execution. Here,
for simplicity, the classifier in the higher-level policy and
those in the lower-level policies are assumed to be iden-
tical except for syntax.

2.3 Outline of policy fusion
We assume higher-level policies are merged into one
lower-level policy. The process is easier if the classifiers
of the higher-level policies are identical to that of the
lower-level policy. If rules p1, …, pn (in policies P1, …,
Pn) in the previous section are to be merged, the result is
rule p. However, the classifiers are usually different, and
then the conditions must be distributed.

For example, assume we merge policies Q1 and Q2,
defined below:

Policy A
Functions f1, f2

Policy A1
Functions f1

Policy A2
Functions f2

(a) Policy division

Policy B1
Functions f1

Policy B2
Functions f2

Policy B
Functions f1, f2

(b) Policy fusion

Policy C1
Functions f1, f2

Policy C2
Functions f3, f4

Policy C3
Functions f1, f3

Policy C4
Functions f2, f4

(c) Combination of policy
division and fusion

Figure 1: Policy division
and fusion, and their combi-

nation

if (C1) {A11; A12;}

if (C2) {A21; A22;}

…

if (Cn) {An1; An2;}

if (C1) {A11;}

if (C2) {A21;}

…

if (Cn) {An1;}

if (C1) {A12;}

if (C2) {A22;}

…

if (Cn) {An2;}

Policy
division

Policy P

Policy
P1

Policy
P2

Same classifier
(list of conditions)

Figure 2: A classifier and its conservation in policy
division



3

Q1 = { if (C11) {A11;}, …, if (C1m) {A1m;} },
Q2 = { if (C21) {A21;}, …, if (C2n) {A2n;} }.

If the actions in Q1 do not contain marking, the result
must be as follows:

Q = { if (C11 AND C21) {A11; A21;},
…,
if (C11 AND C2n) {A11; A2n;},
if (C11) {A11;}, (q1)

…,

if (C1m AND C21) {A1m; A21;},
…,
if (C1m AND C2n) {A1m; A2n;},
if (C1m) {A1m;}, (qm)

if (C21) {A21;}, (q01)
…,
if (C2n) {A2n;} (q0n)

}.

Rules q01, …, q0n are required because there may be
flows that do not match any of the conditions in Q1. Rules
q1, …, qm are required because there may be flows that
do not match any of the conditions in Q2. Such flows
(i.e., flows for which no rule in a policy is applied) are
called default flows. These default flows can be handled
explicitly in Q1 and Q2 if the following rule is added at the
end of the rule list:

if (true) {}.

The above transformation then becomes simpler. For
example, the following rule will be generated from “if
(C11) {A11;}” in Q1 and “if (true) {}” in the updated Q2:

if (C11 AND true) {A11; }.

Rule q1 is a simplified form of this rule.
If an action in Q1 contains marking and Q2 refers to the

marked value, the above transformation cannot be ap-
plied, because the rule in Q2 refers to the newly marked
value, while the corresponding rule in Q refers to the
original value. Thus, a specific transformation method
must be developed in such cases.

Three or more policies can be merged sequentially; i.e.,
the first two can be merged first, then the resulting policy
and the third policy can be merged, and so on. If the
numbers of rules in higher-level policies Q1, …, QN are
n1, …, nN, then the number of rules in the fused policy is
the product (n1 + 1) …(nN + 1). This may be a very large
number, leading to serious performance degradation.
However, if the evaluation result of a condition in the
merged rule is always false, the rule can be removed.

3. Examples
This section describes examples of Diffserv policy design
and examples of policy division and fusion.

3.1 Outline of Diffserv policies
The outline of the Diffserv policies used in the transfor-
mation examples below is given here. Diffserv policies
are used for the examples because they are common and
the author has some experience in the division and fusion
of Diffserv policies. Two types of higher-level policies
designed for policy servers are defined here.

1. Edge policy: A type of policy that classifies, meters,
and/or marks packets. This type of policy can be used
in customer edge routers, provider edge routers, or any
other type of edge router. The information rates of
flows can be metered and compared with values
specified in the rules. The packets may be marked with
a DSCP unconditionally or according to the results of
metering.

2. Core policy: A type of policy that queues, schedules,
and randomly drops packets. This type of policy can
be used in any type of core router. This policy can also
classify packets. A scheduling algorithm, queue length,
and WRED (weighted random early drop) can be
specified.

As noted, both edge and core policies can classify pack-
ets. The classification function in edge policies is usually
used for multi-field (MF) classifications [Car 98]; i.e.,
classifications by 6-tuples: the source and/or destination
IP address, the IP protocol, the source and/or destination
port, and/or the DSCP. The classification function in core
policies is usually used for behavior aggregate (BA) clas-
sifications [Car 98]; i.e., classifications by DSCP.

An edge policy is usually used in edge routers, and a
core policy is usually used in core routers. However, both
of them may be specified in the network interface of an
edge router. This cooperation of edge and core policies is
preferable in some situations.1 In such cases, the edge
policy works first, followed by the core policy.

Examples of edge policy and core policy rules follow:

Edge: if (Source_IP == 192.168.0.1) {
if (Information_rate < 1M bps) {

DSCP = 46; /* EF */
} else {

drop;
};

},

1 This means that an edge router interface may have both edge
and core roles. See Section 3.4, for example.



4

Core: if (DSCP == 46) {
Queue_number = 6;
Scheduling_algorithm = "Priority_scheduling";

}.

Next, two types of lower-level policies implemented in
routers are defined here.

1. Filtering policy: A type of policy that classifies, filters,
and/or marks a DSCP on packets. A filtering policy
can thus be used for access control and marking.

2. Metering and scheduling policy: The information rates
and burst sizes of flows can be metered by using a me-
tering and scheduling policy. If the metering result is
“out-of-profile”, the packets can be remarked or
dropped absolutely according to the specifications in
this policy. Packets can also be queued, scheduled,
and classified by using this policy.

Both filtering policies and metering and scheduling poli-
cies can classify packets.

Examples of filtering policy and metering and sched-
uling policy rules follow:

Filtering:
if (Source_IP == 192.168.0.1) {

DSCP = 46; /* EF */
},

Metering and scheduling:
if (DSCP == 46) {

if (Information_rate < 1M bps) {
forward;

} else {
drop;

};
}.

Neither of these rules can have both metering and
marking functions. An edge policy rule that contains both
metering and marking must thus be divided into a filtering
policy rule and a metering and scheduling policy rule.

A router is assumed to have only one instance of each
policy; i.e., it can have neither two filtering policies nor
two metering and scheduling policies. Thus, a metering
function that is specified in an edge policy and a queuing
and/or scheduling function that is specified in a core pol-
icy must be combined into a metering and scheduling
policy. This means the two higher-level policies must be
fused.

The conditions of policy rules in the filtering and me-
tering and scheduling policies may not contain “OR”; i.e.,
subconditions cannot be ORed. If the condition “A OR
B” is required, A and B must be tested by separate rules in
the filtering policy, and the flows passing through these
rules must be aggregated (Section 3.3).

These policies are closer to the device-level policies of
the earlier versions of Hitachi’s gigabit router GR2000

[Aim 00], and the translation process described here is
similar to that used in the GR2000 Proxy Agent for Poli-
cyXpert,1 but the constraints are tighter in the above poli-
cies.

3.2 Division with metering
If an edge policy contains a rule with classification, fil-
tering, marking, and metering, this rule (and policy) must
be translated into a filtering policy and a metering and
scheduling policy. The edge policy is defined as:

E = { if (C1) {
F1;
if (MC1) {Min1;} else {Fout1; Mout1;};

},
…,
if (Cn) {

Fn;
if (MCn) {Minn;} else {Foutn; Moutn;};

}
},

where C1, …, Cn are conditions that test the 6-tuples of
the packets. “OR” is assumed not to exist in these condi-
tions. MC1, …, MCn are metering conditions that test the
information rate of the flow [Ber 00]. F1, …, Fn, Fout1,
…, and Foutn are filtering actions that either drop all the
packets or do nothing. Min1, …, Minn, Mout1, …, and
Moutn are marking actions that mark a DSCP on the
packets.

The resulting filtering policy and metering and sched-
uling policy are:

F = { if (C1) {F1; Min1;},
…,
if (Cn) {Fn; Minn;}

},

MS = { if (C1) {
if (MC1) {} else {Fout1; Mout1;};

},
…,
if (Cn) {

if (MCn) {} else {Foutn; Moutn;};
}

}.

Conditions C1, …, Cn in policy MS may refer to the
DSCP. However, the DSCP may be rewritten by a rule in
policy F, in which case the evaluation result of condition
Ci (i = 1, …, n) in MS will be different from that of the
same condition in F. In this case, the transformation from
policy E to F and MS is incorrect, so if a condition in E

1 OpenView PolicyXpert (Version 2) is a policy server jointly
developed by Hewlett-Packard Company and Hitachi, Ltd.
OpenView and PolicyXpert are trademarks of Hewlett-Packard
Company.



5

refers to a DSCP, the translator must check the corre-
sponding actions. If an action in E marks the same DSCP,
the transformation fails and the policy server reports that
E cannot be deployed to the device. This problem occurs
because the classifier in E is duplicated in F and MS; i.e.,
the multiple classifiers cause the problem.

To solve this problem, a virtual flow label (VFL)
[Kan 00b][Kan 99] can be introduced. A VFL is a label
attached to a packet or flow and is similar to a DSCP or
an MPLS label. However, a VFL exists outside the
packet (this is similar to an MPLS label that is outside an
IP packet1), and the number of different VFLs is virtually
unrestricted. If a VFL is supported by the device, F and
MS can be rewritten as:

F’ = { if (C1) {F1; Min1; VFL = "L1";},
…,

if (Cn) {Fn; Minn; VFL = "Ln";}
},

MS’ = { if (VFL == "L1") {
if (MC1) {} else {Fout1; Mout1;};

},
…,
if (VFL == "Ln") {

if (MCn) {} else {Foutn; Moutn;};
}

}.

Because the actions in F never rewrite the VFL, E can be
always transformed into F’ and MS’. However, the de-
vice must support VFLs to be able to accept F’ and MS’.

Each VFL value assigned in F’ can be interpreted as a
pointer to a specific rule in MS’. In this interpretation,
the list of the conditions in MS’ is no longer a real clas-
sifier, but each VFL value can be regarded as a control
label (similar to a “goto” label), which is used in a very
restricted way. The problem is solved because this trans-
formation does not introduce multiple classifiers.

In the example above, all the rules in E have a metering
action. However, a rule in E may have no metering ac-
tion:

E: if (Ci) {Fi;}.

There seems to be no need to add a rule derived from this
rule to MS, because the whole function of this rule can be
represented by a rule in F. However, to keep the classifi-
ers in E, F, and MS identical, this rule must also be split
into two:

F: if (Ci) {Fi;},
MS: if (Ci) {}.

1 A VFL is more similar to a generalized MPLS label [Ash 00],
which may be mapped to the layer-two header, TDM (Time-
Division Multiplex) time slots, wavelength, or physical space.

In general, the rule in MS cannot be eliminated. How-
ever, for the purpose of optimization, empty rules may be
combined with other rules in the same policy.

3.3 Division with aggregation and metering
If an edge policy is almost the same as E in the previous
subsection, but the conditions C1, …, Cn contain “OR”,
the result of the policy division will be different because
“OR” is not allowed in a filtering policy. If the ith rule in
edge policy E’’ is

E’’: if (Ci1 OR … OR Cil) {
/* Ci is Ci1 OR … OR Cil. */

Fi;
if (MCi) {DSCP = di;} else {Fouti; Mouti;};

},

then this rule must be split into i rules in the filtering pol-
icy:

F’’: if (Ci1) {Fi; DSCP = di;},
…,
if (Cil) {Fi; DSCP = di;}.

The original rule aggregates the flows before applying the
actions, but the translated rules implicitly aggregate the
flows after the actions are taken. They are aggregated
because they have the same DSCP.

However, the corresponding metering and scheduling
rule cannot be split into l rules because the metering result
would be changed. The metering must be applied to the
aggregated flow, so the rule in MS’’ (updated MS) must
be

MS’’: if (DSCP == di) {
if (MCi) {} else {Fouti; Mouti;};

}.

Because this new rule refers to a DSCP, E’’ must sat-
isfy the condition that the rules (that follow the above
rule) in this policy must not refer to DSCP di. If this con-
dition does not hold, this transformation fails. To avoid
this failure, a VFL can be used instead of DSCP:

F’’’: if (Ci1) {Fi; DSCP = di; VFL = "La";},
…,
if (Cil) {Fi; DSCP = di; VFL = "La";},

MS’’’:if (VFL == "La") {
if (MCi) {} else {Fouti; Mouti;};

}.

The value of the VFL must be initialized to a value other
than "La" (e.g., ""). Again, the problem is caused by the
multiplication of a classifier, and it is solved by not gen-
erating multiple real classifiers. Introducing VFLs is thus
a method of solving this problem.



6

3.4 Fusion of BA classifications
If an edge policy and a core policy satisfy the following
conditions, these policies must be merged into a metering
and scheduling policy.

• The edge policy contains a rule with metering, the core
policy contain a rule with queuing and scheduling, and
these rules work on the same network interface and on
the same (maybe aggregated) flow.

• Both policies have BA classifiers.

Such a situation can occur if the network interface in
which the policies are deployed is the outbound interface
of an edge router.

The edge policy is defined as:

E1 = { if (DSCP == d1) {
if (MC1) {} else {drop;};

},
…,
if (DSCP == dn) {

if (MCn) {} else {drop;};
}

}.

Such a policy can be used for a border router of a provider
network, which is connected to another provider’s net-
work. Packets are not marked in this policy because they
are premarked by following the SLA between the provid-
ers. The core policy is defined as follows:

C1 = { if (DSCP == d1) {Q1; S1;},
…,
if (DSCP == dn) {Qn; Sn;}

},

where Q1, …, and Qn are queuing actions, such as
“Queue_number = 6”, and S1, …, and Sn are scheduling
actions, such as “Scheduling_algorithm =
"Priority_scheduling"”. In this case, these policies can
easily be merged into one:

MS1 = { if (DSCP == d1) {
if (MC1) {} else {drop;};
Q1; S1;

},
…,
if (DSCP == dn) {

if (MCn) {} else {drop;};
Qn; Sn;

}
}.

Because the classifiers of policies E1 and C1 are BA
classifiers, these policies can easily be merged even when
the classifiers are not identical. The order of rules in
these policies can be changed because conditions on
DSCPs are exclusive unless there are duplicate conditions.

In addition, if E1 has a rule whose condition tests DSCP d
but C1 does not have such a rule, a rule that tests d and
has no action can be added to C1 without changing the
meaning, and vice versa. Thus, E1 and C1 can easily be
modified so that they have the same classifier, and they
can be merged.

Since there is no rule that rewrites the DSCP in E1 and
C1, there is no restriction on this transformation. How-
ever, if there was a rule that rewrites the DSCP, the
transformation would become more complicated, and the
existence of a default flow or loophole (see the next sec-
tion) would complicate it further. If MF classifiers are
allowed in the core policy, it may become too complicated
to be implemented.1 All these problems are caused by the
existence of multiple classifiers. Therefore, we can avoid
these problems by using a VFL to eliminate classifiers
from the core policy.

3.5 Combination of division and fusion
If an edge policy and a core policy satisfy the following
two conditions, the edge policy must be split into a filter-
ing policy and a metering and scheduling policy, and the
core policy must be merged into the latter. This means
that both policy fusion and policy division must be ap-
plied. The two conditions are as follows.

• The edge policy contains a rule with metering and
marking, the core policy contains a rule with queuing
and scheduling, and these rules work on the same net-
work interface and on the same (possibly aggregated)
flow.

• The edge policy has an MF classifier, and the core
policy has a BA classifier.

The core policy is C1, and the edge policy is defined
as:

E2 = { if (Source_IP == i11 OR
… OR
Source_IP == i1m1) {
if (MC1) {DSCP = d1;} else {drop;};

},
…,
if (Source_IP == in1 OR

… OR
Source_IP == inmn) {
if (MCn) {DSCP = dn;} else {drop;};

},

1 There is another complexity in policy fusion. Policies to be
fused may be deployed or undeployed sequentially. In such
cases, replacement of a lower-level policy is required. For ex-
ample, if higher-level policies P1 and P2 are deployed at the
same time and then P2 is undeployed, a fused policy is deployed
first and it must then be replaced by a lower-level policy gener-
ated from P1. Due to page limitations, however, this problem
will not be explained further in this paper.



7

if (true) {drop;}
},

where i11, …, i1m1, …, in1, …, and inmn are IP ad-
dresses. The last rule in policy E2 is added to inhibit de-
fault flows. Default flows are inhibited because they
make the following transformation impossible.1

In this case, the resulting filtering policy and metering
and scheduling policy are:

F2 = { if (Source_IP == i11) {DSCP = d1;},
…,
if (Source_IP == i1m1) {DSCP = d1;},

…,

if (Source_IP == in1) {DSCP = dn;},
…,
if (Source_IP == inmn) {DSCP = dn;},

if (true) {drop;}
},

MS2 ={ if (DSCP == d1) {
if (MC1) {} else {drop;};
Q1; S1;

},
…,
if (DSCP == dn) {

if (MCn) {} else {drop;};
Qn; Sn;

}
}.

Each rule in policy F2 corresponds to a subcondition in
E2; i.e., a source IP condition. Flows are aggregated by
rules that mark the same DSCP, and each rule in policy
MS2 handles an aggregated flow.

If there is a default flow with DSCP di, the flow may
be caught incorrectly by the ith rule in MS2. This is the
reason that the default flow is inhibited in this example. If
a VFL is introduced (i.e., each rule in F2 assigns an ap-
propriate value to the VFL, and each rule in MS2 tests the
VFL instead of the DSCP) this restriction can be omitted.

In E2, if there is a rule that neither marks nor tests the
DSCP, the policy fusion is not possible. Such a rule can
be called a loophole. For example, if the following loop-
hole is inserted before the last rule in E2 (which handles
default flows) it will catch flows that are premarked with
any DSCP and that come from IP address i0:

E2’: if (Source_IP == i0) {}.

1 The absence of default flows can be guaranteed by methods
other than including an explicit rule. However, if such a rule is
not given, the policy translator must test all the conditions in the
policy and prove that there are no default flows. This is a heavy
task for the translator.

This causes a problem similar to the one caused by default
flows.

However, if there is a rule that does not mark but does
test the DSCP and there is neither a loophole nor a default
flow, the policies can be transformed correctly. For ex-
ample, we assume the following rule replaces the second
from the last rule in E2:

E2’’:if (DSCP == dn) {}.

Then, this rule can be copied into F2 as is, the last rule in
C1 can be copied into MS2 as is, and the resulting poli-
cies work correctly.

If there is a rule with multiple subconditions but with-
out metering, the subconditions can be distributed to rules
in the metering and scheduling policy rule.2 An example
of an original rule and the resulting rules is shown here:

E2’’’: if (Source_IP == ii1 OR
… OR
Source_IP == iimi) {DSCP = di;},

MS2’’’: if (Source_IP == ii1) {Qi; Si;},
…,
if (Source_IP == iimi) {Qi; Si;}.

When the classifiers must be divided or merged, the
transformation is probably only possible when the forms
of the edge and core policies are highly restricted. If
multiple classifiers are eliminated by introducing VFLs
into both the higher- and lower-level policies, most of
these problems can be solved.

4. A Method of Policy Division and Fusion
In general, the process of policy division and fusion is
very complicated. It is very difficult to describe a general
algorithm. Instead, this section describes a method that
translates an edge policy and a core policy into a filtering
policy and a metering and scheduling policy. The forms
of these policies are the same as these defined in Sec-
tion 3.1. When necessary, both policy division and fusion
are used.

4.1 Conditions and outline
To reduce the complexity of the algorithm while main-
taining its significance, the following conditions are as-
sumed.

1. The edge policy must be given, but the core policy may
be absent.

2. If the edge policy contains both marking or filtering
action and metering action (i.e., the transformation
must contain a policy division):
(a) No rule in the edge policy may test the DSCP
marked by another rule in the policy.

2 However, this is possible only when the semantics of Qi and
Si are not changed by distribution (copying).



8

(b) No rule in the edge
policy, which can test a
DSCP, may remark the
DSCP.

3. If the edge policy con-
tains metering action
and the core policy ex-
ists (i.e., the transfor-
mation must contain a
policy fusion):
(a) The edge policy may
not include either a de-
fault flow or a loophole
(see Section 3.5).
(b) The classifier of the
core policy must be a
BA classifier; i.e., the
conditions must only
have DSCP conditions.1

4. If the edge policy con-
tains a rule with multi-
ple subconditions and metering action (i.e., the trans-
formation requires splitting a policy rule with ORed
conditions), the edge policy may not include either a
default flow or a loophole. The DSCP that the rule
marks may not be marked by any other rule in the edge
policy.

VFLs are assumed to be disallowed for network devices.
A table called a core policy table is used in this

method. This table is used to store the analysis results of
the core policy. Each entry in this table has the form
(DSCP, A), where DSCP is the key for looking up this
table and A is a list of actions.

The outline of the process is as follows.

1. Edge policy pass 1: The edge policy is scanned and the
transformation type�(abbreviated as TT) is deter-
mined; i.e., division, fusion, division-and-fusion,
straightforward, or twisted.

2. Core policy pass: The core policy is scanned and ana-
lyzed, if it exists. If the TT is the straightforward type,
a metering and scheduling policy is generated from the
core policy. Otherwise, the analysis results are written
into the core policy table.

3. Edge policy pass 2: The edge policy is scanned again,
and the core policy table is referred to when necessary.
The policies are transformed into a filtering policy and
a marking and scheduling policy according to the TT.
However, only a filtering policy is generated when the
TT is the straightforward type.

1 This restriction is not necessary when the transformation type
is a straightforward type (see Section 4.2). This restriction is
introduced to reduce the complexity of policy fusion.

4.2 Edge policy pass 1
In this pass, the TT is determined by testing the following
two conditions (Figure 3):
• whether there is a rule with metering, and
• whether there is a rule with marking or filtering action

in the edge policy.
If the first condition does not hold, neither policy division
nor fusion is required and the translation is straightfor-
ward; the filtering policy is derived from the edge policy,
and the metering and scheduling policy is derived from
the core policy. The core policy may be absent. This TT
is called the straightforward type (Figure 3(a)).

If the first condition holds and there is a core policy, a
policy fusion is required. In this case, if the second con-
dition holds, a policy division is also required; i.e., the
edge policy must be split and transformed into a filtering
policy and a metering and scheduling policy. This TT is
called the division-and-fusion type (Figure 3(b)).

If the first condition holds but the second condition
does not hold, only a metering and scheduling policy is
generated. If a core policy exists, a policy fusion is re-
quired. This TT is called the fusion type (Figure 3(c)). If
no core policy exists, only the metering and scheduling
policy is generated. This TT is called the twisted type
(Figure 3(d)).

If the first and second conditions hold but there is no
core policy (i.e., only the edge policy is given), a policy
division is necessary but a policy fusion is not necessary.
This TT is called the division type (Figure 3(e)).

In this pass, condition 3(b) in Section 4.1 is required.
If there is an MF classifier in the core policy, the transla-
tion process reports an error and terminates.

Edge policy
no metering,

marking/
filtering

Filtering
policy

marking/
filtering

Metering and
scheduling

policy

Core policy Edge policy
metering,
marking/
filtering

Filtering
policy

marking/
filtering

Metering and
scheduling

policy
metering

Core policy

(a) Straightforward type (b) Division-and-fusion type

Edge policy
metering,

no marking/
filtering

Metering and
scheduling

policy
metering

Core policy Edge policy
metering,
marking/
filtering

Filtering
policy

marking/
filtering

Metering and
scheduling

policy
metering

Edge policy
metering

no marking/
filtering

Metering and
scheduling

policy
metering

(c) Fusion type (d) Twisted type (e) Division type

Figure 3: Four types of transformation



9

4.3 Core policy pass
If the TT is the straightforward type, a metering and
scheduling policy is generated from the core policy. This
process is not explained any further here.

If the TT is other than the straightforward type, the
following process is executed. For each rule in the core
policy, the list of actions is entered into the core policy
table, with the DSCP in the condition as the key. How-
ever, if two or more rules have conditions that test the
same DSCP, only the first rule is entered into the table,
because the policy rule to be applied is chosen according
to the first match.

4.4 Edge policy pass 2
In this pass, the filtering policy and the metering and
scheduling policy are generated. If the TT is the twisted
type, the edge policy is copied to the metering and sched-
uling policy.

If the TT is the division or division-and-fusion type,
then a rule is generated from each rule in the edge policy
both for the filtering policy and for the metering and
scheduling policy, even if there is no action for one of
them. If the original rule marks or tests the DSCP, it is
looked up in the core policy table,1 and the actions found
are fused into the rule for the metering and scheduling
policy.

If the TT is the fusion type, no rules are generated for
the filtering policy. If the TT is the straightforward type,
rules are only generated for the filtering policy.

If a rule in the edge policy has multiple subconditions,
a rule must be generated from each subcondition. This
must be done even when the TT is the straightforward
type. All the rules mark the same DSCP. If the original
rule contains metering, a rule that tests the DSCP and
meters must be generated for the metering and scheduling
policy. To guarantee that this specific type of policy di-
vision is correct, condition 4 in Section 4.1 must be sat-
isfied. This condition is required because if there is a
default flow or a flow through a loophole, or if there is an
action that marks the same DSCP, the flow will be
wrongly aggregated to the expected flow.

This condition can be removed if a VFL is introduced
into the transformation or if a separate rule that corre-
sponds to each subcondition can be generated for the me-
tering and scheduling policy. (See the last example in
Section 3.5.)

In this pass, conditions 2(a) and (b) in Section 4.1 must
be tested if the TT is the division or division-and-fusion
type, and condition 3(a) must be tested if it is the fusion or
division-and-fusion type. If a violation is found, the
transformation process reports an error and terminates.

1 If a rule tests a DSCP and marks another DSCP, the latter is
used to look up in the table.

5. Conclusion
Although the process of translating higher-level policies
into lower-level policies can be compared to the compila-
tion process of programs in languages such as C++, this
translation is much more complicated than compilation
when policy division or fusion is required. If the forms of
the policies are restricted, they can be transformed me-
chanically. However, if the restrictions are relaxed, the
transformation may become too complicated to be imple-
mented. In addition, restrictions, such as requirements for
the nonexistence of default flows or loopholes, cannot be
eliminated completely. Thus, these transformations
should be avoided if possible. For example, in Diffserv
they can be avoided if the policies for the devices or pol-
icy servers are properly defined. Functions used in other
frequently used services can also be designed so that nei-
ther policy division nor fusion is required.

However, policy-based networking technology will be
used for a wide variety of services. Policy-based packet
processors, such as the Intel IXP1200, are pushing this
trend. Thus, if the hardware function of the devices is
restricted, policy division and fusion will probably be
unavoidable. If they cannot be avoided, the resulting
problems can be solved by introducing VFLs. Such
problems are mainly caused by the existence of multiple
classifiers in policies. By introducing VFLs, harmful
classifiers can be eliminated from policies. Remaining
problems may be solved by further studies on policy divi-
sion and fusion. However, if such problems still cannot
be solved completely, we may have to find a better
method for controlling network devices than using poli-
cies in the current sense; i.e., a sequence of condition-and-
action rules.

Acknowledgments
I thank Brian O’Keefe from Hewlett-Packard Company,
and Toshio Shimojou, Yuuji Isezaki, and Hiromasa
Okamoto of the Enterprise Server Division, Hitachi, Ltd.,
for discussing policy division and fusion problems with
me.

References
[Aim 00] Aimoto, T., and Miyake, S., “Overview of Diff-

Serv Technology: Its Mechanism and Implementation”,
IEICE Transaction on Information and Systems,
Vol. E83-D, No. 5, pp. 957–964,
http://search.ieice.or.jp/2000/pdf/e83-d_5_957.pdf, The
Institute of Electronics, Information and Communica-
tion Engineers, 2000.

[Ash 00] Ashwood-Smith, P., et al., “Generalized MPLS
– Signaling Functional Description”, draft-ietf-mpls-
generalized-signaling-00.txt, Internet Draft, IETF, Oc-
tober 2000.



10

[Ber 99] Bernet, Y., Binder, J., Blake, S., Carlson, M.,
Carpenter, B. E., Keshav, S., Ohlman, B, Verma, D.,
Wang, Z., and Weiss, W., “A Framework for Differen-
tiated Services”, draft-ietf-diffserv-framework-02.txt,
Internet Draft, IETF, February 1999.

[Ber 00] Bernet, Y., Blake, S., Grossman, D., and
Smith, A., “An Informal Management Model for Diff-
serv Routers”, draft-ietf-diffserv-model-04.txt, Internet
Draft, IETF, July 2000.

[Car 98] Carlson, M., Weiss, W., Blake, S., Wang, Z.,
Black, D., and Davies, E., “An Architecture for Dif-
ferentiated Services”, RFC 2475, IETF, December
1998.

[Cha 00] Chan, K. H., Durham, D., Gai, S., Herzog, S.,
McCloghrie, K., Reichmeyer, F., Seligson, J., Smith,
A., and Yavatkar, R., “COPS Usage for Policy Provi-
sioning (COPS-PR)”, draft-ietf-rap-pr-05.txt, Internet
Draft, IETF, October 2000.

[Dur 00] Durham, D., ed., Boyle, J., Cohen, R., Herzog,
S., Rajan, R., and Sastry, A., “The COPS (Common
Open Policy Service) Protocol”, RFC 2741, IETF,
January 2000.

[Fin 00a] Fine, M., McCloghrie, K., Seligson, J., Chan,
K., Hahn, S., Sahita, R., Smith, A., and Reichmeyer, F.,
“Framework Policy Information Base”, draft-ietf-rap-
frameworkpib-03.txt, Internet Draft, IETF, November
2000.

[Fin 00b] Fine, M., McCloghrie, K., Seligson, J., Chan,
K., Hahn, S., Smith, A., and Reichmeyer, F.,
“Differentiated Services Quality of Service Policy In-
formation Base”, draft-ietf-diffserv-pib-02.txt, Internet
Draft, IETF, November 2000.

[Kan 99] Kanada, Y., et al., “SNMP-based QoS Pro-
gramming Interface MIB for Routers”, draft-kanada-
diffserv-qospifmib-00.txt, Internet Draft, October
1999, http://www.kanadas.com/activenet/draft-kanada-
diffserv-qospifmib-00.txt.

[Kan 00a] Kanada, Y., “A Representation of Network
Node QoS Control Policies Using Rule-based Building
Blocks”, International Workshop on Quality of Service
2000 (IWQoS 2000), pp. 161–163, June 2000.

[Kan 00b] Kanada, Y., “Two Rule-based Building-block
Architectures for Policy-based Network Control”, 2nd
International Working Conference on Active Networks
(IWAN 2000), pp. 195–210, October 2000.

[Moo 00] Moore, B., Ellesson, E., Strassner, J., and
Westerinen, A., “Policy Framework Core Information
Model — Version 1 Specification”, draft-ietf-policy-
core-info-model-08.txt, Internet Draft, IETF, October
2000.

[Nic 98] Nichols, K., Blake, S., Baker, F., and Black,
D., “Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers”, RFC 2474, IETF,
December 1998.

[Par 83] Partsch, H., and Steinbruggen, R., “Program
Transformation Systems”, Computing Surveys, Vol. 15,
No. 3, pp. 199–236, Association for Computing Ma-
chinery, 1983.

[Sni 00] Snir, Y., Ramberg, Y., Strassner, J., and Co-
hen, R., “Policy Framework QoS Information Model”,
draft-ietf-policy-qos-info-model-02.txt, Internet Draft,
IETF, November 2000.

[Str 00] Strassner, J., Westerinen, A., Moore, B., Dur-
ham, D., and Weiss, W., “Information Model for De-
scribing Network Device QoS Mechanisms for
Differentiated Services”, draft-ietf-policy-qos-device-
info-model-02.txt, Internet Draft, IETF, November
2000.


