
For ICOIN 2015

1

Abstract – Many commercial and open-source network simulators
are available; however, most of them are not suited for novices in
college and school education or learning. Moreover, although
Ethernet has recently become much more important, simulators
that can be used for this purpose is rare because most simulators
suited for education and learning are designed for IP
communication. The author developed a simple CLI-based
Ethernet simulator that can display contents of Ethernet packets
to send or to receive in terminals and contents of MAC address
tables in switches in “real time”, and used the simulator in a
university class for learning computer networks. The simulator,
which is in public domain, is written in Python and, thus, runs on
Windows, Macintosh, Linux, and other operating systems. The
use of this simulator was evaluated based on a report assignment.
The evaluation result shows that the average score of the reports
written by using the simulator was much better, although it is not
statistically significant because the number of students is small.
The simulator seems to be effective to learn behaviors of
Ethernet-based networks.

Keywords – Ethernet, Learning computer networks, Computer-
network education, Switch simulator, Bridge simulator, MAC
address learning.

I. INTRODUCTION

Ethernet protocol has become much more popular, intelligent,
programmable, and important. There have been many “layer-
2” protocols, such as ATM or fiber channel. However, many
of them has become less popular or used over Ethernet, and
Ethernet has gained much more users. Ethernet networks were
originally broadcast networks without intelligent network
nodes and MAC addresses were completely defined by hard-
ware. However, nowadays, Ethernet packets are forwarded by
intelligent switches that are comparable to IP routers (and a
standardized routing algorithm will also be used [Tou 09]), and
MAC addresses may be defined by software; that is, not only
addresses for VLAN but also addresses in modern physical.
Ethernet interfaces can be replaced by software. Moreover,
Ethernet was only used for LAN, but it is also used for wider
area, namely, MAN, WAN, and even used globally now.

The upper sub-layer of the Ethernet protocol has become
closer to “layer-3” protocols such as IP and comparable to IP
because it has become intelligent. Ethernet is usually used in
combination to IP as IP/Ethernet and this fact impresses us that
whole Ethernet protocol is layer 2 (lower layer) of IP.
However, actually, the Ethernet protocol has two sub-layers
and the upper sub-layer belongs to network layer (layer 3)
although the lower sub-layer of Ethernet protocol based on

CSMA/CA is link layer (layer 2). Peterson and Davie [Pet 11]
describe Ethernet and IP as comparable protocols for
internetworking. (In addition, stacking these protocols causes a
difficult duplicated-address problem, which is solved by ARP
but causes broadcast storms and further complexity [Kan 12];
however, this is out of scope of this paper.)

Although Ethernet protocol, especially the behavior of
switching-based network, has become much more important,
the weight of Ethernet switching in computer-network
education is still very light, and availability of tools for
educating and learning Ethernet is thus also limited. Network
simulators are useful for understanding and learning behaviors
of network nodes and terminals. Especially, because learning
behaviors of a switching network is sometimes complicated,
students tend to misunderstand it but an Ethernet simulator
helps them. There are several simulators of IP networks for
this purpose [Jov 13]; however, Ethernet simulators for
learning purpose are very limited. There are various simulation
software tools that can simulate Ethernet. For example,
OPNET [Cha 99] and ns2 [Cir 11] are famous simulators. This
type of simulators was used for advanced network classes
[Mah 09][Mak 10][Ril 12]. However, most of these simulators
stress advanced or exact (microscopic) simulation, and they
are not much suited for introductory education and learning.

In the above situation, to use a good tool in a computer
network class for novices, the author developed a CLI-based
Ethernet simulator. This simulator, which is called CLSim-ue
(Command-Line SIMulator UDP version for Ethernet) or
CLSim, can display contents of Ethernet packets to send or to
receive in terminals and contents of MAC address tables in
switches in “real time”. CLSim focuses on simple simulation
of communication and watching MAC address tables, so the
user can easily change the display and learning parameters.
Each simulated terminal or switch is a process and they are
“wired” by UDP. CLSim is written in Python and, thus, runs
on Windows, Macintosh, Linux, and other operating systems.
It was used in the university class and the use was evaluated
based on a report assignment. The evaluation result is not
statistically significant because the number of students is
small; however, CLSim seems to be effective to learn
behaviors of Ethernet-based networks.

The rest of this paper is organized as follows. Section II
describes requirements on Ethernet simulators for computer-
network education. Section III describes the design and
implementation of the simulator using a simple example.

Ethernet Switch/terminal Simulators
for Novices to Learn Computer Networks

Yasusi Kanada
Kogakuin University, Tokyo, Japan

yasusi@kanadas.com

For ICOIN 2015

2

Section IV describes more advanced usage examples. Section
V describes several implementation issues. Section VI
evaluates the simulator based on a report assignment to
students, and Section VII concludes the paper.

II. REQUIREMENTS

Four requirements on this type of Ethernet simulators are
described in this section. The first requirement is that both
terminals and switches must be simulated by using the simula-
tor, and that their behavior must be displayed by a proper
method. In addition, the specifications of wiring between the
simulated terminals and switches must be easy. A simulated
terminal must show the destination and source addresses and
contents of packets to be sent and received. A simulated switch
should show the content of the MAC address table to show the
result of address learning. These values should be displayed in
simulated “real time”. The displayed values in all the terminals
and switches must be synchronously updated.

The second requirement is that the simulated terminals and
switches must be able to run on a single computer. Although
an environment close to real network is preferable and the
terminals and switches to be simulated are different devices,
the author decided that the simulated devices must run on a
computer because students are not allowed to use many
computers and they may use their own computer for
simulation. An easy method to fulfill this requirement is to use
virtual machines (VMs). However, it is not easy for the
available Microsoft Windows machines to install VMs, so
another method is required.

The third requirement is that the simulator must run on an
environment that every student can easily set up. It must be
thus supplied as an executable binary file or by using a widely
and easily available execution environment. If a binary file is
selected, .exe file of Microsoft Windows must be supplied
because most students in our university probably use Windows
machines. However, an execution environment based on a
machine-independent interpreter, such as Java or Python, may
be better because a wider range of machine environment can
be applicable.

The fourth requirement is easiness of development or low
development cost. Because no budget was available for this
development, the author himself developed the simulator. In
addition, the available development time was very limited. The
implementation must therefore be simple even if the usage is
constrained.

III. DESIGN AND IMPLEMENTATION

A. Outline
To satisfy the first and second requirements, that is, to
implement terminals and switches on a single computer and to
enable appropriate (real or virtual) communication between
them, each terminal and switch is implemented as a process
invoked by the user, namely, a command line. If a terminal
window (a command prompt in Microsoft Windows) is

assigned to each simulated device represented by a process
running on the window, this requirement can easily be
satisfied. Although it is laborious for a student to open
windows as many as required number of simulated devices and
to run a command, it is conceptually simple and intuitive.

The simulated devices must be able to communicate each
other, and an easy method to achieve this goal is to use inter-
process communications using UDP port numbers for
distinguishing devices and device ports. Because all the
simulated devices run on a computer, an easy way to
distinguish the source and destination devices is to use ports of
an IP protocol, i.e., UDP or TCP. Because the protocol to be
simulated is Ethernet, namely, packet-oriented protocol but not
stream-oriented one, UDP is better; that is, each Ethernet
packet is simulated by a UDP packet.

This means each device-port is represented by a UDP port
and each connected wire is represented by a pair of UDP ports.
These two representations and a method for specifying wiring
easier are explained in the following.

First, UDP port numbers are used to distinguish both
devices and physical ports of the devices. An easy way to
assign a port is to use upper three (decimal) digits of the port
number (e.g., 11 to 654) as the device number and to use lower
two digits as the device port number. For example, device 550
may have ports 0 to 99 (UDP ports 55000 to 55099). In a
command that simulates a switch, the destination devices and
ports, which are represented by UDP port numbers, are
specified by command parameters.

Second, a connected wire is simulated by a pair of UDP
ports which represent the simulated device ports. In a
command that simulates a terminal, the destination device and
port, which is represented by a UDP port number, is specified
as a command parameter. The pair of UDP ports, namely, the
wire, must be specified by the commands that represent the
device ports connected to the wire.

A simulated terminal physically generates a UDP packet
that specifies the same source and destination IP address (i.e.,
the local host address) but different source and destination
ports. The UDP payload contains whole Ethernet frame. The
terminal physically receives a UDP packet that specifies the
port number that represents the terminal. To display the
addresses and contents of the output and input packets, the
terminal writes them to the standard output. A simulated
switch physically receives a UDP packet that specifies one of
the switch ports, namely, that specifies the UDP number of the
switch port. It simulates the switch behavior and it displays the
contents of the MAC address table when required by writing
them to the standard output. If the switching algorithm requires
sending a packet to a connected device, it physically sends a
UDP packet with the port number that corresponds to the
device port.

To satisfy the third requirement, that is, to support easy
environment for students, the author decided to use Python 3
to program the simulator. The reason was that Python 3 is
installed to many PCs in the university. If students decide to

For ICOIN 2015

3

use their own PCs; however, it is probably easy to download
and to install it by using an installer if the URL of the installer
is told. Java may also have been available but it was not used
because the developed program could be used for certain other
purposes if they were written in Python. In addition, installing
Java may cause a problem because it easily affect overall
environment of the PC.

The simulator is a collection of short programs, so it is
offered as a public-domain software and available from
http://www.kanadas.com/program-e/2014/04/ethernet_-
simulator_for_learnin.html or http://bit.ly/1ukTG6Z .

To satisfy the fourth requirement, that is, to reduce the
development cost, CLI was chosen for the user interface,
although it is easier for novices to use a graphical user-
interface (GUI) than a command-line interface (CLI). He
believed that an easy-to-use interface could be realized by a
well-designed CLI at least for students in ICT-related
departments of universities. Students in such departments
should learn CLI and use of CLI-based simulator may be a
good chance to study CLI.

B. Simple example
To explain the design and implementation by using an
example, Figure 1 shows a simple simulated network.

Terminals PC541, PC542, and PC543 are connected through
switches SW550 and SW551.

A program named term.py is used for the terminals. The
command is shown in the figure. Physical port 0 of PC542
(i.e., UDP port 54200) is connected to physical port 1 of
SW550 (i.e., UDP port 55001). This connection is expressed
by command parameters --lp and --rp (which mean “local
port” and “remote port”). This command specifies a communi-
cation between a terminal to another terminal (only one
destination), so parameters --lm and --rm (which means
“local MAC address” and “remote MAC address”) specify the
source and destination MAC addresses for communication.
Packet output can be inhibited by parameter --receiveOnly.
This parameter is convenient for testing one-way communica-
tion, which is important to observe learning behaviors. A
promiscuous mode may be specified by parameter --
promiscuous. PC543 is also connected to SW550 in the same
way, and PC541 is connected to SW551 in the same way.

A program named switch.py is used for the switches. The
command is shown in the figure. Device port 3 or SW550 (i.e.,
UDP port 55003) is connected to device port 0 (UDP port
55100) of SW551. This connection is expressed by command
parameters --lp2 and --rp2. Because each connection is
specified by using different parameters (which must have

PC542

PC543

PC541

SW550 SW551

python term.py --lm 000300000001
--rm 000300000002 --lp 54100 --rp 55102

55100

55100

55102

55102

port 2
(55102)

port 0
(55000)

python term.py --lm 000300000002 --rm 000400000003
--lp 54200 --rp 55001

python switch.py --nports 4 --lp0 55000 --rp0 54300
--lp1 55001 --rp1 54200 --lp3 55003 --rp3 55100
--monitor 0 --timeout 30 --dumpMAC

python term.py --lm 000300000003
--rm 000300000002 --lp 54300 --rp 55000

port 0
(55000)

port 0 (54300)

port 0 (54200)

port 1
(55001) port 3

(55003)

port 0
(55100)

python switch.py --nports 4 --lp0 55100 --rp0 55003
--lp1 55101 --rp1 54000 --lp2 55102 --rp2 54100
--lp3 55103 --monitor 0 --timeout 30 --dumpMAC

Figure 1. Example of simulator use

For ICOIN 2015

4

different names), the parameter names contain numbers; that
is, the parameter names are lp0, rp0, lp1, rp1, and so on.
The number of ports is specified by a command parameter
--nports. Parameter --dumpMAC specifies displaying the
MAC address table, parameter --timeout specifies when a
learned address is forgotten, and parameter --monitor
specifies some additional outputs.

The terminal windows show sent and received packets.
Because the standard output is used for displaying the packets,
the window scrolls rapidly. However, because it repeatedly
scrolls by three lines at once and the contents is the same
except the timestamp, only the timestamps are effectively
rewritten and other contents are easy to be read.

The switch windows show the contents of the MAC address
table when --dumpMAC option is specified. The contents of
this table can also be read easily while they are not changed.

IV. ADVANCED EXAMPLES

More complicated examples than the one shown in the
previous section, in which the simulator is more useful, are
described as follows.

A. Looping
CLSim can be used for simulating behaviors of networks with
loops. An Ethernet-based network does not allow redundant
links, namely, loops. A simplest loop can be created by
connecting two ports of a switch.

python switch.py --nports 3 --lp0 55001 --rp0 55002
--lp1 55002 --rp1 55001 --lp2 55003 --rp2 54001
--monitor 1

python term.py --lm 000300000002 --rm 000300000001
--lp 54001 --rp 55003

These commands simulate a network as the diagram below.

 +--------+
 |Device 550 port 1
Device 540 port 1 | 55001 |
+------+ 54001 +----+---+ |
| PC 1 +----------+ Switch | |
+------+ 55003 +----+---+ |
 Device 550 port 3 | 55002 |
 |Device 550 port 2
 +--------+

A loop can also be created by connecting two switches by two
wires.

No communication happens by just creating a loop, but, if
at least one packet comes from another wire, the loop
reproduces packets with the same contents again and again.
The packets continue to flow even when all other wires are
disconnected; that is, even when all the programs that
simulates other packet sources are terminated.

B. Terminal motion
While running a switch (simulator), a terminal connected to
the switch may be virtually moved; that is, ther terminal can be
reconnected to another switch or to another port of the switch.
This live virtual motion, however, requires a special technique.
To do so, two scripts (commands) with different ports should

be prepared.

python term.py --lm 000300000001 --rm 000300000002
--lp 54001 --rp 55001

python term.py --lm 000300000001 --rm 000300000002
--lp 54101 --rp 55101

After stopping the execution of the first script, the second
script should be started to simulate the motion. The remote
port of the destination switch (which has local port 55101, i.e.,
port 1 of device 551) should be the local port of the second
terminal above, i.e., 54101 (port 1 of device 541). This means,
the command to invoke the switch is as follows.

python switch.py --nports 3 --lp0 50000 --rp0 51000
--lp1 55001 --rp1 54001 --lp2 55002 --rp2 54101
--monitor 0 --timeout 30 --dumpMAC

python switch.py --nports 3 --lp0 51000 --rp0 50000
--lp1 55101 --rp1 54101 --lp2 55102 --rp2 54102
--monitor 0 --timeout 30 --dumpMAC

The above configurations makes the communication
between the moving terminal and the switches correct;
however, they are much complicated. The reason why such a
complicated configuration is required is that the destination
port of a simulated switch is fixed when it is invoked and the
wiring cannot be changed because the wiring is defined by the
command parameters. This is different from physical device
wiring which can be changed at run time.

C. Timeout
If a terminal moves but it does not generate packets,
communication is wrongly disturbed by the past address
learning. In the experiment in the previous subsection, the
switch learns the new location of the moved terminal
immediately because the terminal generates packets. However,
if a --receiveOnly parameter is specified, the switch does
not generate packets and it does not learn the new location of
the terminal. The terminal will not thus receive packets that
must be sent to it.

For example, a switch learns a terminal connected to switch
port 0, and then the terminal is moved to another place
(another port or switch). If the moved terminal does not send a
packet, the switch sends packet for the terminal to a wrong
direction, namely, only to the original port 0. This behavior
makes the terminal fail to receive packets. Usually, the
terminal will be able to receive packets when a timeout occurs
and packets arrived the switch are broadcasted. (A
configuration of the timeout time by a --timeout parameter
makes experiments easier.) However, if no timeout occurs, no
new learning occurs unless the terminal sends a packet, so the
terminal cannot receive packets.

In addition, more complicated situation that a switch
generate packets but they are not learned by a switch that
contains temporary wrong table content may be simulated.

V. IMPLEMENTATION ISSUES

Four implementation issues and several minor issues are
described in this section.

For ICOIN 2015

5

A. Python versions
Because of incompatibility of Python 2 and 3, it was difficult
to unify simulator programs for these versions. The simulator
runs on Python 3 on Windows, Macintosh, or Linux as is. If
Python 2 processor receives the simulator program for Python
3 it stops compilation because of an error. However, if the
statements specified in the programs are rewritten, it can run
on Python 2 too.

B. Multi-computer environment
The simulator in the current form runs only on a single
computer, but it can be easily extended to multi-computer
environment. All the terminals and switches simulated by the
simulator are assumed to run on a single PC because the author
assumed that no student wants to run the simulator in multi-
computer environment. However, because UDP/IP is used for
communications between simulated terminals and switches, it
is easy to adapt the simulator to a multi-computer environ-
ment. Instead of specifying only a UDP port, if the program is
slightly modified so that a an IP address and a UDP port are
specified in a command parameter for a source or destination
port, the simulator works among different computers.

C. Complexity of wiring
There are three reasons that causes wiring between simulated
devices complicated. The first reason is that the wiring in the
simulator is uni-directional. A physical Ethernet wire is
usually bidirectional even when the communication is half
duplex. Devices connected by a simulated wire in the
simulator must however specify the source and destination
ports separately because the commands that implements the
devices runs independently. Therefore, if the parameters are
inconsistent, the simulation fails.

The second reason of complexity is use of UDP port.
Because all the simulated devices must run on a computer,
each simulated physical port must have different UDP port
number. In the standard usage, the UDP port number combines
the physical port number and the device number. The author
believes this usage is conceptually simple, but still it
complicates the specification of wiring.

The third reason of complexity is caused by the method of
specifying command parameters. Because all the command
parameters must have different names, each port must be
distinguished by the parameter name, namely, --lp0 and
--rp0, --lp1 and --rp1, and so on. Because the postfixes 0,
1, … are independent from the device port numbers, it is quite
complicated.

To solve this complexity problem, an additional program
(i.e., a script generator) was developed. The reason of this
development was that it seemed difficult for the students to
configure a network consistently, although he had believed
that the standard usage of the simulator was simple enough for
them. The script generator input a specification of a network
such as follows.

switch 510
 linkto 410 # server
 linkto 511 # switch

 linkto 512 # switch

switch 511
 linkto 411 # PC 1

switch 512
 linkto 412 # PC 2

Server 0
terminal 410
 localMAC 000300000001
 remoteMAC 000300000002

PC 1
terminal 411
 localMAC 000300000002
 remoteMAC 000300000001

PC 2
terminal 412
 localMAC 000300000003
 remoteMAC 000300000001

The script generator generates scripts for specified terminals

and switches. The above specification contains three terminals
and three switches. Each simulated wire, which is
bidirectional, is specified only once, and no command names
are specified. Physical port numbers are also generated
automatically.

Although the script generator was distributed to students, it
was after the report deadline. None of them thus used it in this
year.

D. Busy wait on Windows XP
The simulated terminal program generates a packet per second.
A busy wait was used in the original program to wait for a
second. This program works well on newer Windows
(Windows Vista, 7, and probably 8), Macintosh, and Linux.
However, students found that it did not work well on Windows
XP because a busy wait spent too much time. The program
was not tested on Windows XP because this OS was not
available for the author. It was rewritten to sleep while
waiting. The wait time must be 1 ms or more because a smaller
time specified is regarded as 0 on Windows XP.

VI. EVALUATION

The simulator was used for an assignment of a report on
Ethernet. The students of a computer network class were asked
to hand two reports. The first report should describe the design
and rough behavior of an Ethernet-based network manually,
and the author guaranteed to give full score for this report if it
was handed (submitted). The students were encouraged to use
the simulator when writing the second report. To use the
simulator was originally a must; however, because the author
found that it was difficult for them to use the simulator, he
loosened the condition. Students who used the simulator got
additional marks but simulator use was not a must.

Several additional conditions on this report assignment are
described below. The class is for fourth-grade night-class
students of the Department of Informatics, Communication
and Media, but first- to third-grade students and several
students from other departments also took this class. The
average knowledge and skill of the students are thus rather

For ICOIN 2015

6

low. Most of the students who tried the simulator used their
own Windows PC instead of using PCs in the University
probably because it was not convenient for them to use the
PCs there. Although the simulator can run on Macintosh or
Linux, all of them used Windows. In addition, some (many?)
of them still used Windows XP instead of a newer versions of
Windows.

The results of this report assignment are summarized in
Table 1. The numbers of submitted first and second reports are
21 and 13. In nine of the 13 second reports the simulator is
used. (Initially, the number of submitted reports was small, but
the author encouraged to submit it after the deadline.) The
average percentage of the second report (without additional
marks) using and not using the simulator are 67% and 48%.
There seems to be a difference in these percentages. This
difference may be cause by the effect of using and learning
from the simulator or by knowledge and skill of the students,
which are not acquired by the simulator. However, because the
number of samples is small, the difference is not statistically
significant.

Several students (maybe four to ten students) seemed to try
but to abandon the simulator because of several reasons. The
major reason is that the difficulty of wiring terminals and
switches for the simulator; that is, it was difficult for them to
prepare parameters of switch and terminal commands
consistently. However, there are also several other reasons.
One reason is that some students did not know how to use the
CLI (i.e., the command prompt of Microsoft Windows).
Especially, it was difficult for some students to set up the
current directory and the path for executing Python. Another
reason is that the simulator was distributed by a zip file but at
least one student did not know how to decompress it (probably
because a zip file looks like a normal folder in Windows).

Other reasons of failures are as follows. At least two
students used the simulator but did not obtain correct results.
The reason may be the difficulty of wiring devices. At least
one student failed to install Python, but the reason was
unknown because she did not know the reason and the author
could not see the reason either because it was her own PC. At
least one student correctly used the simulator but he seems
failed to understand switch behavior. The author found it
because his score of the final examination were very low.
However, most of the students who used the simulator seem to
understand Ethernet better.

In this report assignment, the author did not take time for
practice in the class time. It may have got much better results
if the usage of the simulator was taught in a computer room.

VII. CONCLUSION

A CLI-based Ethernet simulator that can display contents of
Ethernet packets in terminals and contents of MAC address
tables in switches in “real time” was developed for a university
class. Each simulated terminal or switch is a process and they
are “wired” by UDP. The simulator, which is in public
domain, is written in Python and, thus, runs on Windows,
Macintosh, Linux, and other operating systems. This simulator
was used in the university class and the use was evaluated
based on a report assignment.

The evaluation result shows the average score of reports
that were written by using the simulator was much better, but it
is not statistically significant because the number of students is
small. Although the simulator used for this evaluation still had
several problems to be solved, the simulator seems to be
effective to learn behaviors of Ethernet-based networks and it
seems to be promising if the above problems are solved.

REFERENCES

[Cha 99] Chang, Xinjie, “Network simulations with OPNET”,
31st Conference on Winter Simulation (WSC’99), pp. 307‒
314, 1999.

[Cir 11] Ciraci, S. and Akyol, B., “An Evaluation of the
Network Simulators in Large-Scale Distributed
Simulations”, 1st International Workshop on High Perfor-
mance Computing, Networking and Analytics for the Power
Grid (HiPCNA-PG’11), pp. 59‒66, 2011.

[Jov 13] Jovanović, N., Jovanović, Z., Popović, O., Stanković,
I., and Zakić, A., “Computer Network Simulation and
Visualization Tool”, 11th International Conference on
Telecommunications in Modern Satellite, Cable and
Broadcasting Services (TELSIKS 2013), October 2013.

[Kan 12] Kanada, Y. and Nakao, A., “Development of A
Scalable Non- IP/Non-Ethernet Protocol With Learning-
based Forwarding Method”, World Telecommunication
Congress 2012 (WTC’12), March 2012.

[Mah 09] Maheswaran, M., Malozemoff, A., Ng, D., Liao, S.,
Gu, S., Maniymaran, B., Raymond, J., Shaikh, R., and Gao,
Y., “GINI: A User-level Toolkit for Creating Micro Inter-
nets for Teaching & Learning Computer Networking”, ACM
SIGCSE Bulletin, Vol. 41, No. 1, pp. 39‒43, March 2009.

[Mak 10] Makasiranondh, W., Paul Maj, S., and Veal, D.,
“Pedagogical Evaluation of Simulation Tools Usage in
Network Technology Education”, World Transactions on
Engineering and Technology Education, Vol. 8, No. 3, pp.
321‒326, 2010.

[Pet 11] Peterson, L. L. and Davie, B. S., “Computer
Networks, Fifth Edition: A Systems Approach”, Morgan
Kaufmann, 2011.

[Ril 12] Riley, G. F., “Using Network Simulation in
Classroom Education”, 2012 Winter Simulation Conference
(WSC’12), 2012.

[Tou 09] Touch, J. and Perlman, R., “Transparent Interconnec-
tion of Lots of Links (TRILL): Problem and Applicability
Statement”, RFC 5556, IETF, May 2009.

Table 1. Result of report assignment

Item Number of students 2nd report score

1st report submission 21 -
2nd report submission 13 61%

Using the simulator 9 67%
Not using the simulator 4 48%

