

Federation-less Federation
of ProtoGENI and VNode Platforms

Yasusi Kanada and Toshiaki Tarui
Hitachi, Ltd., Central Research Laboratory

Yokohama, Japan
{Yasusi.Kanada.yq, Toshiaki.Tarui.my}@hitachi.com

Abstract – Our previous work enabled “federation-less federa-
tion”, which means a federation of multiple network-virtualiza-
tion platforms that do not support federation functions, and
applied this method to a homogeneous federation of platforms
called the “VNode” infrastructures. In this study, this method
was applied to a heterogeneous federation of the ProtoGENI and
the “VNode”. We intended to federate these platforms through a
single management interface. However, the federation architec-
ture of GENI, which is called the slice-based federation architec-
ture (SFA), cannot be used for single-interface federation but we
could not modify the ProtoGENI platform to enable it. Therefore,
a method for applying federation-less-federation to ProtoGENI
was developed. It enabled federation of these platforms by adding
several nodes but without modifying preexisting platforms. This
method was applied to federation of the ProtoGENI platform at
the University of Utah and two VNode infrastructures in Japan,
the slice creation and deletion time was measured and evaluated
to be acceptable. Although this federation-less-federation imple-
mentation still has several minor problems, it was proved to be
useful for experiments and demonstrations.

Index terms – Network virtualization, VNode, Federation, GENI,
ProtoGENI, Slice-based federation architecture (SFA)

I. INTRODUCTION

In a recent project on new-generation networks (NwGNs),
called the VNode Project [Nak 10], a deeply programmable
network-virtualization architecture and platform, called VNode
[Nak 12][Kan 12], was developed. Two virtualization plat-
forms based on VNode have been deployed. One is in a testbed
network, called JGN-X (JGN Extreme) [Pan 11], for design-
ing, deploying, and testing new network services in Japan, and
the other is deployed in the Hakusan Laboratory of the
National Institute of Information and Communications
Technology (NICT) in Tokyo.

In a succeeding project, a method for federating two or
more virtualization platforms was developed. Each platform
probably has limited types and limited amounts of resources,
so their federation enables a combination of various resources
for network applications. The previously developed federation
method enabled both federation of homogeneous domains
[Kan 13], which was applied to the two above-mentioned
VNode Infrastructures, and federation of heterogeneous
domains [Oka 13] such as a VNode Infrastructure and other
virtualization platforms.

The federation method has two features. First, it supports a
federation-less federation [Kan 13]; that is, it enables federa-
tion of multiple domains that do not support federation
functions without having to modify their existing network-
virtualization platform. Several components added to the
original platform enable the federation. Second, it supports a
familiar single-interface federation or multi-way federation
[Tar 15], which provides a single management interface to

slice developers. A federated slice is created by a negotiation
between the managers of the domains. The homogeneous
federation method for VNode Infrastructures [Kan 13] also
supports a single-interface federation.

Other federation methods, however, do not necessarily
support a single-interface method. In the case of GENI (Global
Environment for Network Innovations) [Due 12], domains,
which are called aggregates in GENI, are federated by using
the slice-based federation architecture (SFA) [Pet 10][Ric 13]

[Ric 12]. Utilizing the SFA, a slice developer can federate
aggregates by sending requests to all the managers of the
aggregates (AMs). The communication sequence required for
the federation is therefore strongly dependent on the domains
to be federated and the number of domains. The sequence for
creating a federated slice is quite different from that for
creating a single domain.

Because we intended to federate platforms by a familiar
single-interface method, instead of using the SFA, the method
of federation-less federation was applied to not only VNode
Infrastructures but also a GENI domain. A federation function
between VNode and GENI was implemented in the VNode
infrastructures on JGN-X and Hakusan and the ProtoGENI
[Ric 13][Ric 12] platform at the University of Utah, which is
an implementation of GENI.

The rest of this paper is organized as follows. Section II
describes related work. Section III summarizes the previously
developed federation-less federation method. Section IV
outlines federation-less federation between the ProtoGENI and
the VNode platforms. Section V describes the implementation
and evaluation of this method, and Section VI concludes this
paper.

II. RELATED WORK

ProtoGENI has a federation architecture called the slice-based
federation architecture (SFA). Although each virtualization
platform in federated platforms has its own method of
allocating and managing networking and computational
resources, the SFA enables a unified method for allocating
resources on these platforms to slices and managing them.
Each platform can support an SFA wrapper to federate it with
other platforms [Aug 14] [Wah 10][Ban 11].

However, two issues, namely, interface enforcement and
federation-resource management, remain to be addressed. The
first issue is that to create a slice that is spread among multiple
domains by using the SFA, the client (e.g., a GUI) or the user
must understand the architecture, which may be very different
from the virtual-network architecture that the user or the
designer of the PC client is familiar with. If the client designer
or the user is familiar with a certain virtualization platform, it
will be easier and better to use the method for this platform to

create and manage a slice than to use the method used for the
SFA.

The second issue, namely, federation-resource management,
is that there is no established method for handling resources
between federated platforms. The GENI architecture has a
brokering service called network stitching [GENb], which
replies to questions on available VLAN resources among the
platforms. However, because the stitching service actually
does not manage the resources, a slice may fail to allocate the
required resources even when it replies with a positive answer.
In addition, no unified and consistent method for obtaining
information on other types of resources is available in GENI.
The SEP manages all the resources among the platforms,
including both the networking and computational resources on
the platforms and networking resources between them.
Moreover, the familiar single-interface federation provides a
unified method for allocating and de-allocating the resources.

III. FEDERATION-LESS FEDERATION

This section briefly overviews the federation-less federation
method proposed in a previous paper [Kan 13] and explains
the reasoning behind this method.

A. Basic federation method
The federation functions provided by the slice-federation
method connect two or more domains of the same or different
types of virtualization platform, including VNode Infrastruc-
tures and GENI-based platforms such as ProtoGENI. The
domains are federated by using a set of XML-RPC-based APIs
[XML] called Common APIs [VNP 14] (see Figure 1(a)). The
set of federation APIs should be a standardized interface
supported by various types of virtualization platforms. Each
API basically consists of simple pair of a request and a reply.
The federation through the common APIs is managed by the
slice exchange point (SEP) [Oka 13][Tar 15], which will be
explained in detail later. Many types of federation functions,
such as those listed in Figure 1(b), are provided.

A feature of this federation method is the familiar single-
interface federation. It provides a single management interface
(and a single control framework) to slice developers who are
familiar with (i.e., who usually uses) this interface. That is, a
slice developer (or a client such as a GUI) sends a slice
creation and other requests to one management interface, i.e.,
only one domain. A federated slice is created not by sending
the definition to multiple domains by the slice developer but
by a negotiation between the managers of the domains.
Accordingly, a slice operation can be initiated from any
domain in the federated domains. Therefore, this feature is also
called multi-way federation [Tar 15].

It is assumed that a slice-operation message with a slice
specification is first sent to the management server of a domain
(domain A in Figure 1(a)), which is called a domain controller
(DC). A copy of the specification is then forwarded to the DC
of the other domain (domain B) through the federation API.
The slice-specification example shown in Figure 1 consists of
four virtual nodes and four virtual links. Two virtual nodes
(VN1 and VN2) belong to domain A, and the others belong to
domain B. For simplicity, in the slice specification, their
mapping is assumed to be fixed. Two of the four virtual links
(VL14 and VL23) are inter-domain links. Because inter-
domain links exist, the domains cannot be managed
independently; in other words, the inter-domain links (or

resources required for implementing these links) must be
managed in relation to both domains (and possibly a third
domain between these domains).

In a slice creation, VN1 and VN2 are created and managed
by the DC in domain A, and VN3 and VN4 are created and
managed by the DC in domain B. Although the virtual links
within a domain are managed solely by the DC in the domain,
the inter-domain links are cooperatively created and managed
by the DCs in both domains. The information required for this
cooperation is exchanged using the federation API.

Figure 1(a) shows a federation between two domains only.
If three or more domains are federated, the SEP plays the
major role in communicating between these domains. A three-
domain example is shown in Figure 1(c). The federation is
managed by the SEP, consisting of a conceptually centralized
federation manager (broker) called a SEP core, which consists
of a control-plane component called a SEP control core and a
data-plane component called a SEP data core (which may be
empty). The SEP contains unified federation APIs (called
common APIs) and an interworking function (IWF) between a
domain and the SEP core. The IWF consists of control-plane
components called gatekeepers (GKs) and data-plane compo-
nents called federation gateways (GWs). The GKs and GWs
are components of the SEP; that is, they are external to the

Domain A

VNode
N11

VNode VNode
N12

Domain
Controller

VNode
N21

VNode
N22

VNode

Domain
Controller

Domain BSlice specification

VN1 VN3

VN2 VN4

VL14 VL23

Slice S

VN1

VN2

VN3

VN4

VL14

VL23

… N11

… N12

… N21

… N22

Operation

(creation,
modification,

etc.)

Common API
(Slice Exchange

Point, SEP)

(a) Basic federation function

1. Resource discovery: Cross-domain discovery of computational
resources available in virtual nodes and link resources available
between virtual nodes. The API finds resources from known
domains, i.e., known gatekeepers. No function for discovering DCs,
DPNs, gateways, and gatekeepers is included.

2. Slice handling: a) creation and resource allocation of a slice
among multiple domains, b) slice modification, i.e., addi-
tion/removal of virtual nodes or links (i.e., resource modification)
in a federated domain or cross-domain virtual links, and c) resource
de-allocation and deletion of a slice among domains.

3. Query on statistics and manifests: a) query on slice (and
platform) statistics such as number of packets counted in a virtual
link and b) query on manifests, i.e., bottom-up parameters such as
virtual-node host names or addresses.

(b) Functions of common APIs

SEP

Virtualization
Platform

Virtualization
Platform

Virtualization
Platform

G
K

SEP
data
core

Common
Data I/F

SEP
control
core

Common
API

G
W

(c) Federation of three or more domains

Figure 1. Federation method and common APIs

virtualization platform. However, the GKs convert platform-
dependent proprietary messages of the virtualization platform
to unified messages of the common APIs.

B. Outline of federation-less federation
Even if the management system of a domain (which is called
the “own domain”) does not have federation functions, a
federation can be achieved by regarding other domains as sub-
domains of the own domain. That is, each other domain to be
federated may be regarded as a proxy node of the own domain
[Kan 13]. Figure 2(a) shows the domains to be federated and
the physical nodes of these domains. The nodes in the other
domain are virtually enclosed in (encapsulated by) the domain
proxy node (DPN), so they are not managed by the own
domain. (Instead, they are managed by the management
system of the other domain.) A DPN communicates with the
DC in a similar way to a VNode (that is, it has the same APIs
as a VNode), but it does not have network-node functions,
such as routing or switching, because it only represents the
other domain and delegates requests. The SEP handles
messages between these two proxy nodes through GKs.

Figure 2(b) shows examples of three representations of a
federated slice, which must be mapped to the physical
networks shown in Figure 2(a) by the domain controllers.
Figure 2(b1) shows an abstract and symmetric representation.
This representation is suitable for allowing the slice developer
to specify the slice structure. However, because it explicitly
contains the concept of a multiple-domain network, it is not
acceptable to a DC without a federation function.
Representations close to the physical structure are therefore
used. The representation (RSpecs) for domain A is shown in
Figure 2(b2), and that for domain B is shown in Figure 2(b3).
The virtual nodes of the other domains are enclosed by a
pseudo virtual node (PVN), which is mapped to the DPN and

represents the other-domain part of the slice. The DC of the
own domain does not manage the virtual nodes of the other
domain because they are enclosed in (encapsulated by) the
pseudo node.

IV. FEDERATION-LESS FEDERATION OF PROTOGENI AND
VNODE PLATFORMS

This section describes the requirements and the method of
federating ProtoGENI and other domains including VNode
Infrastructures by using the federation-less federation method.

A. Requirements
Federations on ProtoGENI are based on the SFA. To federate
domains by using the SFA, each domain must have entities
and abstractions required by the SFA; that is, it must have
components and slices as abstractions, and each group of
components, which is called an aggregate, must be managed
by an aggregate manager (AM). A slice developer or a client
(e.g., a GUI) must send requests, such as slice creation
requests, to the AMs of all the federated domains. That is, the
user or client must know all the domains to be federated.

However, to apply the single-interface federation of
ProtoGENI and VNode platforms, the domains must be
federated by only one request to an AM by the slice developer.
The SEP handles the request and determines the domains and
propagates the request to all the domains through GKs of the
domains. To federate ProtoGENI and VNode domains by this
method, therefore, a request sent to the VNode domain
controller (DC) must be propagated to the AM of the
ProtoGENI domain, and a request sent to the AM must be
propagated to the DC. The original ProtoGENI architecture
including the SFA does not have this function.

To achieve a familiar single-interface federation, a
federation method different from that of ProtoGENI must be
developed. Because a method for achieving this federation
requires an extension of ProtoGENI function but we cannot
modify the ProtoGENI platform at the University of Utah, a
new method that enables the federation without modifying the
ProtoGENI platform must be developed.

B. Outline of method
To implement a familiar single-interface federation of both
platforms, the federation-less federation method was applied
not only to VNode but also to ProtoGENI. As described in the
previous section, when sending a request to the home domain,
the nodes in the other domain are enclosed in a pseudo node in
the slice specification in the request, which contains the
resource specifications (RSpecs) in GENI. If the request is
submitted to the DC in a VNode domain, the request is
processed by using the method described in the previous
section. That is, the DPN receives the specification of a PVN,
which contains the specifications of the other domain (see
Figure 2(b)). However, if a slice-creation request is submitted
to the AM in the ProtoGENI domain, the slice specification
and the handling method are different.

When the AM receives a slice specification, which is in the
domain-specific form shown in Figure 2(b2), it is processed as
follows (see Figure 3). When the DPN, which is actually
implemented as a PVN as explained later, is invoked (that is,
receives a slice creation request), it invokes the GK. The GK
sends the specifications of the other domains, which are
actually retrieved from the AM, to the SEP. The ProtoGENI-

VNode
N11

Domain
controller

Domain B

VNode
N21

Domain
controller

Domain A

VNode
N22

VNode
N12

Domain B as a
subdomain of A
(a proxy node)

Domain A as a
subdomain of B
(a proxy node)

VNodeVNode

(a) Physical structure

Slice SSlice S

Domain A

Domain B

2) Slice representation
in Domain A

VN1*

VN2*

VirtualNode PVN1*

VN3*

VN4*

VL14 ††

VL23 ††

… N11**

… N12**

… N21**

… N22**

… DPN11†

VN3*

VN4*

VN1*

VN2*

Slice S

VN3*

VN4*

VirtualNode PVN2*

VN1*

VN2*

VL14††

VL23 ††

… N11**

… N12**

… DPN21†

… N21**

… N22**

1) Abstract and symmetric
slice representation

3) Slice representation
in Domain B

… N11**

… N12**

… N21**

… N22**

*VN1, VN2, VN3, VN4, PVN1, PVN2: Virtual nodes.
** N11, N12, N21, N22: VNodes (physical nodes).
† DPN11, DPN21: Domain proxy nodes (physical nodes).
†† VL14, VL23: Cross-domain virtual links.

(b) Virtual structure representations
Figure 2. Structures of federated domains and nodes

side GK, which is connected to the ProtoGENI platform, and
the program used in the PVN were implemented.

To implement the above-described federation method, the
following four problems must be solved. First, no DPN was
available and could not be implemented in the ProtoGENI
aggregate at the University of Utah. DPN thus had to be
replaced by other components. Second, the DPN replacements
do not receive the RSpecs of the other domain, but they need
the RSpecs to create the slice. Third, the DPN replacements do
not receive the parameters for inter-domain connections,
especially VLAN IDs in the ProtoGENI aggregate. They are
necessary to establish the connections between the domains.
Fourth, the DPN replacements do not receive slice-creation
and slice-deletion messages; instead, one is invoked when the
created slice is “started”, and it is just killed when the slice is
“stopped” before it is deleted. This sequence is a problem
because the DPN replacements are unable to time slice
creation or deletion. These problems and solutions are
explained more in the following subsections.

C. Implementation of DPN functions
The first problem to be solved is that no physical DPN is
available in a ProtoGENI domain and a DPN cannot be
implemented without modifying the ProtoGENI platform. In
the original proposal of federation-less federation [Kan 13], a
DPN is a physical component of a domain. It receives the slice
definition, extracts and converts the information on the other
domain, and sends it to the other domain through the common
APIs. However, because we are just a user of the ProtoGENI
platform (i.e., not a developer or manager), we cannot modify
it by adding or modifying a platform component of
ProtoGENI.

This problem can be solved by giving the role of a DPN to a
PVN and the GK. The PVN is a slice component and is
allocated and handled by the same method as other nodes in a
slice of ProtoGENI. To create a slice that spreads between
ProtoGENI and VNode domains, the PVN is specified in the
slice specification and allocated to a single computer.
However, the resources that the PVN in the slice specification
contains, namely, the resources of the other domains, are not
allocated by the AM. When the PVN is invoked, it runs an
initiation script that triggers the GK. The GK collects the
RSpecs and parameters and sends them to the other domain.
The method for collecting them is described in the next
subsection. If there are multiple slices between ProtoGENI and
VNode domains, each slice contains a PVN, but only one GK
exists. A PVN sends a request with the slice identifier to the
GK.

D. Obtaining RSpecs of other domains
The second problem is that the DPN replacements, at least the
GK, need the RSpecs of the other domain, but the RSpecs are
not pushed to them. In the original design described in the
previous paper [Kan 13], a DPN receives the whole slice
specification that contains a specification of a PVN, which
contains the RSpecs of the other domain. However, a PVN in
the ProtoGENI domain does not receive the RSpecs because
an AM just allocates resources to an allocated node; namely, it
does not send the RSpecs to the node.

This problem can be solved by the following method. When
the GK is triggered by the PVN, it obtains the “manifest” of
the slice by sending a “list resources” request to the AM. A
manifest is an XML-based description that contains both the
RSpecs and parameters assigned as the results of resource
allocation, including VLAN IDs, MAC addresses, and IP
addresses; that is, it contains both top-down and bottom-up
information concerning the slice. The GK extracts the RSpecs
of the other domains and sends them to the domains through
the SEP. Because the manifest contains a copy of the
specification of the PVN that contains the original RSpecs of
the virtual nodes and links, which are described by the slice
developer, it contains the RSpecs of the other domains.

E. Obtaining parameters of allocated resources
The third problem is that the DPN replacements do not receive
the parameters for specifying inter-domain connections. In the
original design of our federation method, domain-internal
parameters for connecting inter-domain links are obtained by
negotiation. However, no such mechanism is available on
ProtoGENI. As for the proposed federation method, each inter-
domain link is divided into three parts, i.e., an inter-domain
part and two intra-domain parts (Figure 4), as described in the
previous paper [Kan 13]. A DPN in each domain receives the
parameters for the intra-domain part (i.e., GRE keys and IP
addresses of GRE tunnels) by negotiating with the end-point
VNode. However, in a ProtoGENI domain, no negotiation is
used for this purpose, but it is necessary to get the networking
parameters, i.e., VLAN ID, for the intra-domain (and for the
inter-domain) connection.

This problem can be solved by extracting the required
parameters, such as the VLAN IDs, from the manifest. The
PVN sends these parameters to the other domain through the
SEP.

F. Determining resource allocation/de-allocation timing
The fourth problem is that nodes in a created slice do not
receive the creation and deletion messages. They are merely
invoked when the created slice is “started”, and it is merely
killed when the slice is “stopped” before it is deleted. The
DPN replacements are thus unable to catch the timing of slice
creation or deletion.

This problem can be solved by the following method. The
solution for slice creation is to create the VNode-domain part

VNode
N11

VNode

Domain
controller (DC)

ProtoGENI domain

Node
N21

Node

Aggregate
Manager (AM)

VNode domain

Node
N22

VNode
N12

DPN PVN
(“DPN”)

Component
Manager (CM)

Slice specification (Figure 2(b3))

SEP

GK

Manifest
request

Request (creation
etc.)

GK

Figure 3. ProtoGENI-to-VNode federation method

Node
N22

Gateway2

Node
N12

Gateway1
VN1 VN4

VL14i1
conv conv

VL14i2VL14eIP MACIP IP IPMAC

Gateway Control Interface (GCI) Gateway Control Interface (GCI)

DPN
P21

Gate-
keeper 1

Gate-
keeper 2

DPN
P11

Common
API and

SEP

Figure 4. Inter-domain link structure

of the slice when the ProtoGENI-domain part is started. This
solution is acceptable when the size of the slice is not large.
However, if a more scalable solution is required, an alternative
solution (shown in Figure 5) can be applied. The solution is
that the client sends a message to the GK in addition to the
AM (Figure 5(a)) or it sends a message through a client proxy
that passes the message to both the AM and the GK
(Figure 5(b)).

A solution for slice deletion is to send a deletion request,
which is called “deleteslivers” in GENI, to the client proxy or
the PVN instead of sending it to the AM. The client proxy or
the PVN forwards the message to the AM and the GK. If the
PVN is used for this purpose, this messaging must precede

destruction of the PVN. If the client sends the message to the
GK or the client proxy, this constraint is not required, and this
method is symmetric with the methods described in Figure 5.
However, the client must know the address and interface of the
GK.

V. IMPLEMENTATION AND EVALUATION

The federation functions were partially implemented for
demonstration and evaluation to show the method is feasible
and its performance is acceptable. The slice specification used
is distributed between a ProtoGENI domain in Utah and two
VNode domains in Japan, which are connected through trans-
pacific VLANs. It is expressed as a collection of RSpecs of
GENI, which is partially listed in Figure 6. This figure con-
tains the definition of the PVN, which contains specifications
for two VNode domains as well as specifications for the
ProtoGENI domain and the inter-domain virtual links. The
interfaces to the GKs are also specified explicitly in this
specification. Note that one of the VNode domains is omitted
here. Sequences for a slice creation and a slice deletion are
described in Figure 7. This figure also contains the elapsed
time since the client requests a creation or deletion. The
creation took 12 min 41 sec, and the deletion took 3 min 54
sec on average. (Each time value is an average of two
measured values.)

Figure 7(a) shows a slice-creation sequence. First, the client
sends a “createsliver” request to the AM. This request creates a
PVN as a part of the slice. When the PVN starts, it triggers the
GK. The GK obtains the manifest from the AM, extracts the
slice design of the VNode part, and sends it to the SEP. The
SEP negotiates with the VNode domains and returns a reply

VNode

Aggregate
Manager (AM)

VNode
N22

PVN
(“DPN”)

Component
Manager (CM)

Client

Manifest
request

Request

GK

VNode
N21

VNode

Aggregate
Manager (AM)

VNode
N22

PVN
(“DPN”)

Component
Manager (CM)

Client

Manifest
request

Request

GK

Client Proxy

VNode
N21

(a) Message copy by client (b) Message copy by proxy

Figure 5. Alternative solutions to the fourth problem

Gatekeeper I/F
(ProtoGENI domain)

InterDomain virtual link

Virtual link in VNode domain

<rspec …>
<node client_id="GKname" component_id="…" …>

<sliver_type name="emulab-bbg" />
<interface client_id="GKname:if0" />

</node>
<node client_id="NS01" component_manager_id="…" …>

…
</node>
… <!-- Other virtual nodes (node slivers) in ProtoGENI domain -->
<node client_id="PVN" …>

<sliver_type name="raw-pc" />
<federation_design>
<node client_id="GKname" …>
<sliver_type name="emulab-bbg" />
<interface client_id="GKname:if0" />

</node>
<node client_id="NodeVNode1" component_id="VN13"

component_manager_id="VNodeDomainName" … >
<sliver_type name="SlowPath_VM" sub_type="KVM">
<common_API_param key="cpu" value="4" />
<common_API_param key="arch" value="x86_64" />
<common_API_param key="memory" value="4096" />
<common_API_param key="storage" value="30GB" />
…

</sliver_type>
<interface client_id="NodeV1:vip1" />
<interface client_id="NodeV1:vip2" />

</node>
… <!-- Other virtual nodes (node slivers) in VNode domain -->
<link client_id="LinkVNode1">
<component_manager name="remotedomain" />
<component_manager name="VNodeDomainName" />
<interface_ref client_id="GKname:if0" />
<interface_ref client_id="NodeV1:vip1" />
<property source_id="GKname:if0“

dest_id="SP021:vip1" />
<property source_id="SP021:vip1“

dest_id="GKname:if0" />
</link>
… <!-- Other virtual links (link slivers) in the VNode domain -->

</federation_design>
</node>
<link client_id="LS01">
<interface_ref client_id="NS01:vip1" />
<interface_ref client_id="GKname:if0" />
<property source_id="NS01:vip1" dest_id="GKname:if0"

capacity="100000" />
…

</link>
… <!-- Other interdomain virtual links -->

</rspec>

Virtual node in ProtoGENI domain

Gatekeeper I/F
(VNode domain)

Virtual node in VNode domain

PVN = Other domain

Figure 6. Outline of RSpecs (a slice definition)

for a ProtoGENI-VNode federation

createsliver (request)

16:59:08 (0:00) create PVN

Client AM PVN GK

CreateSlice (request)

17:04:29 (5:21)

Create&Run(request)

17:03:15 (4:07)
Get manifest (request)

17:03:15 (4:07)

Get manifest (reply)

17:04:29 (5:21)

SEP

createsliver (reply)

17:01:22 (2:16)

CreateSlice (reply)

17:05:03 (5:55)

Run (request)

17:05:03 (5:55)

Run (reply)

17:11:33 (12:25)
Create&Run (reply)

17:11:33 (12:25)

Time out in an AM client

(a) Slice creation

Stop (request)

time 0:00

Client AM PVN GK

Stop (request)

time 0:00

SEP

Stop (reply)

time 2:48

DeleteSlice (request)

time 2:48

DeleteSlice (reply)

time 3:54
Stop (reply)

time 3:54

deletesliver (request)

time 0:00
deletesliver (reply)

time 2:01

(b) Slice deletion
Figure 7. Implemented communication sequences and

measurement results

after the VNode parts are created.
The elapsed time is acceptable but much longer than the

optimum for two reasons. One reason is that when the client
and the GK send requests to the AM, timeouts caused by an
erroneous usage of an intermediate program (called Omni)
consume approximately two minutes, but they do not affect the
result. The other reason is that the creation of three parts of the
slice, i.e., the ProtoGENI part and the two VNode parts, are
mostly sequential because the latter is invoked after the PVN is
created. If the sequence is optimized so that the client sends a
request for other domains to the GK instead of the AM, the
completion time can be earlier. However, this sequence
complicates both the request and the sequence.

Figure 7(b) shows a slice-deletion sequence. The elapsed
time is reasonable; however, because of limitations of
implementation resources, this sequence is a temporary
version. That is, in an ideal design, the client sends only one
request for a slice deletion. In the above sequence, however, it
sends two requests. One request is sent to the AM, and the
other is sent to the GK.

The implemented federation method was successfully used
for demonstrating federations of ProtoGENI and VNode
domains at the 20th GENI Engineering Conference (GEC 20)
[GENa]. Although the creation time and the deletion sequence
are not ideal, this implementation was proved to be useful for
experiments and demonstrations.

VI. CONCLUSION

To implement a familiar single-interface federation, the
previously proposed federation-less federation method was
applied to not only VNode but also ProtoGENI. The federation
method used for ProtoGENI was applied to federation of the
ProtoGENI platform at the University of Utah and VNode
Infrastructures in Japan, and it enabled federation of these
platforms by adding several nodes but without modifying
preexisting platforms. The federation sequences were logged
and the elapsed time was measured. Although this federation-
less-federation implementation still has several minor
problems, the measurement result shows that the time required
for slice creation and deletion is acceptable for demonstration
purposes. The proposed method was successfully used for
demonstrating federation of the ProtoGENI and two VNode
domains and proved to be useful for experiments and
demonstrations.

Future work will include improving the implementation of
the proposed method for the ProtoGENI platform, including
improvement of the slice-deletion sequence, and application of
this method to federation of three or more different types of
domains (including a VNode domain).

ACKNOWLEDGMENTS

The authors thank Michiaki Hayashi and Shuichi Okamoto of
KDDI R&D Laboratories for their collaboration concerning
federation architecture and for their useful comments on this
paper. The authors also thank Nozomu Nishinaga from the
National Institute of Information and Communications
Technology (NICT) and Rob Ricci and Gary Wong from the
University of Utah for setting up ProtoGENI for federating to
the VNode Infrastructure, and the authors thank Professor
Akihiro Nakao from the University of Tokyo, Yasushi Kasugai
from Hitachi, Ltd., Kei Shiraishi, Hidenori Takagi, Takanori

Ariyoshi, and Hidenobu Iwatake from Hitachi Systems, Ltd.,
and other members of the project for their help and comments
on the design, implementation, and evaluation of the federation
function. Part of the research results described in this paper is
an outcome of the Advanced Network Virtualization Platform
Project B funded by NICT.

REFERENCES
[Aug 14] Augé, J., Parmentelat, T., Turro, N., Avakian, S., Baron,

Larabi, M. A., Rahman, M. Y., Friedman, T., and Fdida, S., “Tools
to Foster a Global Federation of Testbeds”, Computer Networks,
Special Issue on Future Internet Testbeds, 2014.

[Ban 11] Bannazadeh, H., Leon-Garcia, A., Redmond, K., Tam, G.,
Khan, A., Ma, M., Dani, S., and Chow, P., “Virtualized
Application Networking Infrastructure”, TridentCom 2010,
LNICST 46, pp. 363–382, 2011.

[Due 12] Duerig, J., Ricci, R., Stoller, L., Strum, M., Wong, G.,
Carpenter, C., Fei, Z., Griffioen, J., Nasir, H., Reed, J., and Wu,
X., “Getting Started with GENI: A User Tutorial”, ACM
SIGCOMM Computer Communication Review, Vol. 42, No. 1., pp.
72–77, January 2012.

[GENa] “GEC 20”, http://groups.geni.net/geni/wiki/GEC20Agenda
[GENb] “GENI Network Stitching-Overview”, https://wiki.-

maxgigapop.net/twiki/pub/GENI/NetworkStitching/geni-network-
stitching-architecture-overview.pdf

[Kan 12] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-
Virtualization Nodes that Support Mutually Independent
Development and Evolution of Components”, 13th IEEE
International Conference on Communication System (ICCS 2012),
October 2012.

[Kan 13] Kanada, Y., Tarui, T., and Shiraishi, K., “Federation-less-
federation of Network-virtualization Platforms”, IFIP/IEEE
International Symposium on Integrated Network Management (IM
2013), May 2013.

[Nak 10] Nakao, A., “Virtual Node Project ― Virtualization
Technology for Building New-Generation Networks”, NICT News,
No. 393, pp. 1–6, June 2010.

[Nak 12] Nakao, A., “VNode: A Deeply Programmable Network
Testbed Through Network Virtualization”, 3rd IEICE Technical
Committee on Network Virtualization, March 2012,
http://www.ieice.org/~nv/05-nv20120302-nakao.pdf

[Oka 13] Okamoto, S., Kuroki, K., Matsumoto, N., and Hayashi, M.,
“Design of Network Slice Exchange for Bridging Future Internet
Testbeds”, 18th OptoElectronics and Communications Conference
(OECC/PS 2013), pp. 1–2, June-July 2013

[Pan 11] Pan, J., Paul, S., and Jain, R., “A Survey of the Research
on Future Internet Architectures”, IEEE Communications
Magazine, Vol. 49 , No. 7, pp. 26–36, July 2011.

[Pet 02] Peterson, L., Anderson, T., Culler, D., and Roscoe, T., “A
Blueprint for Introducing Disruptive Technology into the Internet”,
ACM SIGCOMM Computer Communication Review, Vol. 33, No.
1, pp. 59–64, January 2003.

[Pet 10] Peterson, L., Ricci, R., Falk, A., and Chase, J., “Slice-
based Federation Architecture, Version 2”, http://groups.geni.net/-
geni/wiki/SliceFedArch, July 2010.

[Ric 12] Ricci, R., Duerig, J., Stoller, L., Wong, G., Chikkulapelly,
S., and Seok, W., “Designing a Federated Testbed as a Distributed
System”, TridentCom 2012, June 2012.

[Ric 13] Ricci, J., Wong, G., Stoller, L., and R., Duerig, “An
Architecture for International Federation of Network Testbeds”,
IEICE Trans. Commun., Vol. E96-B, No. 1, pp. 2–9, 2013.

[Tar 15] Tarui, T., Kanada, Y., Hayashi, M., and Nakao, A.,
“Federating Heterogeneous Network Virtualization Platforms by
the Slice Exchange Point”, submitted for IM 2015.

[VNP 14] VNode Project, “Federation Architecture and Common
API / Common Slice Definition (Draft V2.0)”, https://nvlab.nakao-
lab.org/Common_API_V2.0.pdf

[Wah 10] Wahle, S., Magedanz, T., and Gavras, A., “Conceptual
Design and Use Cases for a FIRE Resource Federation
Framework”, in Tselentis, G., et al. ed., “Towards the Future
Internet”, IOS Press, 2010.

[XML] XML-RPC Home Page, http://www.xmlrpc.com/.

