
ポリシーサーバ PolicyXpert における
Diffserv ポリシーとそのくみあわせ

金田　泰†, ブライアン・オキーフ‡

†日立製作所 研究開発本部 IP ネットワーク研究センタ
〒244-0817 横浜市戸塚区吉田町 292 番地

‡Hewlett-Packard Company
3404 East Harmony Road MS A2 Fort Collins, CO 80528-9599, USA

E-mail: †kanada@crl.hitachi.co.jp, ‡bokeefe@cnd.hp.com

あらまし ネットワークのポリシー制御において，Diffserv のようなプログラムしカスタマイズすることが可能な

ネットワーク機能を表現するために，複数のポリシーをくみあわせる必要が生じることがある．PolicyXpert とい

うポリシーサーバにおいて，3 種類のポリシーと，ポリシーを接続するための 3 種類の仮想フローラベル (VFL)
とを設計・実装した．ポリシーのくみあわせによって複雑な Diffserv ポリシーが表現可能になる．また，ポリ

シーをくみあわせることにより，DSCP にもとづくサービスクラスのサブクラスの定義が可能になり，サービス

ポリシーと加入者ポリシーとの分離が可能になっている．しかも，Diffserv ポリシーを慎重に設計したため，単

純な Diffserv ポリシーは単純なかたちであらわせるようになった．

キーワード ポリシーベース・ネットワーキング，ポリシーサーバ，Diffserv，ポリシー結合，仮想フローラベル．

Diffserv Policies and Their Combinations
in a Policy Server Called PolixyXpert

Yasusi Kanada†, Brian J. O’Keefe‡

†IP Network Research Center, Research & Development Group, Hitachi, Ltd.
Totsuka-ku Yoshida-cho 292, Yokohama 244-0817, Japan

‡Hewlett-Packard Company
3404 East Harmony Road MS A2 Fort Collins, CO 80528-9599, USA

E-mail: †kanada@crl.hitachi.co.jp, ‡bokeefe@cnd.hp.com

Abstract In policy-based networking, policies sometimes have to be combined and applied in cooperation to represent such
programmable and customizable network functions as Diffserv. For a policy server called PolicyXpert, we have designed
and implemented three types of policies and three types of virtual flow labels (VFLs) to connect the policy rules. The policy
combination enables the representation of complex Diffserv policies. Policy combination also allows sub-classing of DSCP-
based service classes, and the separation of service and subscriber policies. The careful design of Diffserv policies has
enabled simple Diffserv policies to be represented in a simple form.

Key words Policy-based networking, Policy server, Differentiated Services (Diffserv), Policy combination, Virtual flow
label.

1. INTRODUCTION
Policy-based network management (PBNM) is a promising
technology because it provides the following benefits.
Firstly, it is easy to create, to modify, and to delete policies
dynamically without interfering other policies because they
are rule-based. A rule is a fine-grained module that can be
added, deleted, or modified independent of other rules.
Secondly, the amount of network configuration task can be
reduced by using policies because one policy can be used
for policy targets that are of various types, i.e., network
nodes or interfaces, and that have been developed by a va-
riety of vendors. Thirdly, heterogeneous networks can be
managed according to a unified set of policies that follows
the IETF (Internet Engineering Task Force) standards.
Policies are modeled by the Policy Framework Working
Group of the IETF [Moo 01, Sni 00]. A protocol called
COPS (Common Open Policy Services) [Dur 00], its usage
called COPS-RSVP [Her 00] and COPS-PR [Cha 01], and
data formats conveyed by COPS-PR, which are called PIBs
(policy information bases), are also standardized by the
IETF.

In programmable and customizable networks, two or
more policies often work in cooperation. For example, in a
QoS-assured network service such as Diffserv
(Differentiated Services) [Car 98, Ber 99], packet flows
from service subscribers are classified and policed (i.e.,
limited to a certain bandwidth) at an edge router, and
queued and scheduled in each router that the flow passes
through. Thus, policies for classification, policing, and
queuing/scheduling must cooperate to assure QoS. If the
service is typical Diffserv, the policy for classification
specifies the class or the DSCP (Diffserv Code Points)
[Nic 98] of the flow, and the policy for queuing/scheduling
specifies the testing of the DSCPs to determine the algo-
rithms and parameters for queuing and scheduling required
by packets in that class. These policies can be regarded as
components of a network-wide QoS policy. Although
DSCPs can be used for implicit cooperation of policies,
other services may require explicit cooperation.

Lupu and Sloman [Lup 99] developed methods for han-
dling policy conflicts. Conflicts are types of relationships
between policies. They are usually negative relationships
because they cause inconsistencies among policies and
because they accidentally and implicitly occur. In contrast,
the concept of policy combination [Kan 01a] was devel-
oped for explicitly specifying a positive relationship be-
tween policies [Kan 00a, Kan 00b]. Conventionally, no
methods for combining policies explicitly have been devel-
oped.

Policies can be complex as explained above. If they are
complex, they should be built from building-block policies.
The structure of the combined policy may not be very sim-
ple. However, a simple policy should be simple; i.e., if the
nature of a policy is simple, it should be represented in a

simple form.
This paper explains the three types of provisioning

Diffserv policies and the methods and application cases of
policy combination in a policy server (PDP) called Open-
View PolicyXpert and JP1/PolicyXpert1. The goal of the
policy design in this policy server is to enable both policy
combination in complex policies and simple representation
in simple policies using a concise set of policies. Policy
and system architectures of PolicyXpert overviewed in
Section 2, and the three types of Diffserv policies are ex-
plained in Section 3. The method of policy combination in
PolicyXpert is explained in Section 4, and it application
cases are explained in Section 5.

2. POLICY AND SYSTEM ARCHITECTURES
A policy is a sequence of condition-action rules in Poli-
cyXpert. An example of a condition-action rule is as fol-
lows:

if (Source_IP_address is 192.168.1.1) { -- condition
DSCP = 10; -- action

}.
This rule marks DSCP 10 on (the packets in) a flow

from IP address 192.168.1.1.
A policy P may be represented as:

P = {rule1, rule2, … }.
The conditions for applying rules 1, 2, … are evaluated

from top to bottom, and only the action which corresponds
to the first condition to be matched is taken. Policies in this
system mostly conforms with the IETF Policy Core Infor-
mation Model (PCIM) [Moo 01].

The outline of PolicyXpert architecture is illustrated in
Figure 1. Policies are defined by the administrator or op-
erators using the console. They are inputted to the server
(PDP) and stored into the policy database. They are de-
ployed to proxy or embedded policy agents (PEP) and the
network devices are configured by the agents. The server
also manages network interfaces of the devices by using the
information managed and sent by the agents.

3. THREE TYPES OF DIFFSERV POLICIES
There are three policy types for Diffserv in PolicyXpert 2.0
[HP 00] and later versions. See Figure 2.

1. Traffic Classifier (CL) Policy
 A CL Policy classifies (the packets in) packet flows and

assigns labels called CIDs (Classifier Identifiers. See
Section 4.1). A CL Policy is usually deployed to edge or
border interfaces (i.e., interfaces that are connected to
points outside the Diffserv domain) and applies to in-
bound traffic.

1 OpenView and PolicyXpert are trademarks of Hewlett-Packard
Company. JP1 is a trademark of Hitachi, Ltd. PolicyXpert Version
2.0 was developed jointly by Hewlett-Packard and Hitachi.

2. Traffic Conditioner (TC) Policy
 A TC Policy meters, marks, and/or drops packets abso-

lutely (i.e., unconditionally). TC Policies, too, are usu-
ally deployed to edge or border interfaces and apply to
inbound traffic.

3. Queue Control (QC) Policy
 A QC Policy queues and schedules, or drops packets

randomly (by using the WRED or a similar algorithm).
A QC Policy is usually deployed to core interfaces (i.e.,
interfaces that are connected to other interfaces within
the Diffserv domain) and applies to outbound traffic. A
QC Policy rule can be regarded as (a model of) a queue
or scheduler; i.e., a traffic control object.

TC and QC Policies are natural representation of Diffserv
functions as policies; i.e., collections of condition-action

rules. So the Diffserv policies mostly conform with the
IETF Diffserv models, i.e., the conceptual router model
[Ber 01], Diffserv MIB [Bak 01] and PIB [Fin 01], and
QoS Policy Information Model (QPIM) [Sni 00]. In this
policy server, only one instance of a policy type can be de-
ployed at one network interface.

Examples of these policies are given below. Although a
GUI is used for creating and editing policies in PolicyX-
pert, the policies are described in a C-like language here for
concise description.1

1. Example of a CL Policy rule
 The following rule (1.1) assigns the CID value

"EF_CID" to flows come from IP address 192.168.1.1.
 if (Source_IP_address is 192.168.1.1) {

CID = "EF_CID";
}. (1.1)

 Marking a CID is the only function of the CL Policy,
and it is usually used as a component of a larger policy.

2. Examples of TC Policy rules
 A simple (stand-alone) rule

 The following rule (2.1) is a simple TC Policy rule and
marks DSCP 10 on packets.
 if (Source_IP_address is 192.168.1.1) { DSCP = 10; }.

(2.1)
 This rule can be used as a stand-alone rule; i.e., in a

given device, no other rule may be applied in coopera-
tion with this rule.
 A more complex rule

 Rule (2.2), shown below, is applied to flows to which
the CID value “EF_CID” has been attached to.
 if (CID is "EF_CID") {

if (InformationRate <= 10 Mbps) {
DSCP = "EF"; -- marking

} else {
Discard; -- absolute drop

};
 }. (2.2)

 This rule may thus be combined with rule (2.1). Rule
(2.2) meters the traffic and marks the DSCP “EF” on the
packets in the first 10 Mbps of the traffic, and discards
other packets.2 This rule can be used for an EF
(Expedited Forwarding) service [Jac 99] of Diffserv, and
it must be combined with a TC Policy rule such as rule
(1.1).

1 However, no such language is currently supported.
2 Under PolicyXpert, if two or more CL Policy rules specify the CID
value "EF_CID", the information rate of either of these flows can
reach 10 Mbps, and the sum of these flows may exceed 10 Mbps.
This is because rule (2.2) is conceptually copied before combination
with other CL Policy rules, so that the original rule (2.2) works as a
template. A more detailed description of the semantics is given in the
PolicyXpert Users Guide [HP 00].

Diffserv domain

Edge interface
Core interface

Inbound traffic
Outbound traffic

TC Policy QC Policy

Inbound traffic
Outbound traffic

TC Policy and
QC Policy

Edge routers Core
routers

(or QC Policy
 only)

Figure 2: Diffserv policy types and their deployment

Network Device

Console

PolicyXpert
Server (PDP)

Proxy agent
(PEP)

Network Device

Embedded
agent (PEP)

COPS

COPSCOPS

CLI, etc.

Policies

Policy
DB

Figure 1: Architecture of PolicyXpert

3. Examples of QC Policy rules
 A simple (stand-alone) rule

 The following rule (3.1) applies a bounded priority
queuing algorithm to the queuing and scheduling of
packets with a DSCP of "EF".1

 if (DSCP is "EF") {
SchedulingAlgorithm = "B-PQ";

-- bounded priority queuing
Priority = 6; -- means “high”
ShapingRate = 20 Mbps;

}. (3.1)

 The traffic is then shaped to 20 Mbps. Rule (3.1) rep-
resent a queue that is connected to a priority scheduler
that is not given as a rule.
 A more complex rule

 Rule (3.2), shown below, represents a scheduling queue,
and this rule specifies three discard levels; newly coming
packets with a DSCP of "AF11" are discarded only when
the queue is filled with 200 packets (100%), while newly
coming packets with a DSCP of "AF12" are discarded
when the queue contains 140 (70%) or more packets and
newly coming packets with a DSCP of "AF13" are dis-
carded when the queue contains 100 (50%) or more
packets.

 if (DSCP is ["AF11", "AF12", "AF13"]) {
SchedulingAlgorithm = "A-BW";
Max_Queue_Size = 200 packets;
CommittedRate = 64 kbps;

-- assured minimum rate
DiscardAlgorithm = “Deterministic Discard”;
if (DSCP is "AF11") {

DiscardLevel = 100%;
-- allowed to use whole queue

} elsif (DSCP is "AF12") {
DiscardLevel = 70%;

-- allowed to use 70% of the queue
} elsif (DSCP is "AF13") {

DiscardLevel = 50%; };
-- allowed to use 50% of the queue

}.

“Deterministic Discard” is specified as the discard algo-
rithm. This specifies a non-random algorithm for drop-
ping packets. This rule can be used for an AF (Assured
Forwarding) service [Hei 99] of Diffserv. A random
discard method such as the weighted random early dis-
card (WRED) can be specified instead of deterministic
discard too. The reason that the all the discard levels are
specified in a rule is that rule (3.2) also represents a
queue; i.e., the discard levels are specified for a single
queue. If they are separated into different rules, they
specify different queues.

Example of a rule that represent a scheduler will be shown

1 The actual value of DSCP is a 6-bit number. However, a name can
be given by using a parameter group in PolicyXpert.

in Section 5.2.

4. METHOD OF POLICY COMBINATION
To combine policies, both the dataflow and the control
flow between policies must be specified.

4.1 Specification of dataflow between combined poli-
cies

A specific dataflow of packets can be detected by using
flow labels [Kan 00b]. Flow labels are labels attached to a
packet or flow. They are used for selecting a rule from a
policy. Flow labels are of two types (illustrated in Fig-
ure 3).
1) Real flow labels: labels written inside the packet. A

DSCP is an example of a real flow label.
2) Virtual flow labels (VFLs): labels external to the packet.
A real flow label is conveyed by packets, so the two poli-
cies to cooperate can exist in different network nodes.
However, a VFL is not conveyed by packets themselves, so
the policies to cooperate must exist in the same network
node unless the virtual tag value is conveyed by some other
means, such as wavelength, physical location, and so on.
We focus on the usage of VFLs below.

64
 Packet

1000

 Packet

(1) Real flow label (2) Virtual flow label
Figure 3: Two types of flow labels

Dataflows between policies are specified by defining
and using VFL values in the rules of the policies. If Pol-
icy 2 is executed after Policy 1 (illustrated in Figure 4), a
VFL can be defined by one or more of the rules (in actions)
of Policy 1, and the VFL can be referred to in one or more
of the rules (in conditions) of Policy 2.2

VFLs in PolicyXpert are classified into three categories:
1. Classifier ID (CID): A CID combines rules in CL and

TC policies. For example, rules (1.1) and (1.2) in Sec-
tion 3 are combined by the CID "EF_CID".

2. Traffic ID (TID): A TID combines rules in a TC Policy.
3. Queue Set ID (QID): A QID combines rules in a QC

Policy. An example of this combination is shown in
Section 5.2.

Policy combinations created by these VFLs are illustrated

2 Two rules in Policy 2 should not be combined to rules in Policy 1 in
reversed order. Otherwise, difficult semantic problems may occur.
This means, when there are rules 1a and 1b in Policy 1 and rules 2a
and 2b in Policy 2, and rule 1a precedes 1b, rule 2a precedes rule 2b,
rule 1a assigns VFL a, rule 2b assigns VFL b, then if rule 2a refers to
VFL b, rule 2b should not refer to VFL a because the reference order
is the reversed assignment order. If rule 2a refers to VFL a, rule 2b
can refer to VFL b because the orders coincide.

in Figure 5. A character string is used for VFL values in
PolicyXpert. The string values are usually translated into
other type of data, such as integral values by a policy agent
(PEP). TIDs and QIDs only combine rules within a single
TC or QC Policy because there is only one instance of a TC
or QC Policy for an interface.

VFL rule

rule

...Policy 1 Policy 2
VFL

rule

rule

...

Figure 4: Connection of policies using VFLs

CL TC
CID

 (1) Classifier Identifier

TIDTC

QIDQC

(2) Traffic Identifier (3) Queue Set Identifier
Figure 5: Three types of VFLs

4.2 Specification of control flow between combined
policies

Flow of control can be explicitly specified by using a
properly-defined policy language [Kan 00b]. For example,
if CL1, TC1, and QC1 are policies, then the following
declaration specifies a flow of control:

order CL1 -> TC1 -> QC1.

However, the order of policy evaluation can be prede-
fined as part of the definition of a specific policy. The or-
der of CL, TC and QC Policies is predefined as shown in
Figure 6; i.e., a CL Policy can be followed by a TC Policy,
a TC Policy can be followed by a TC or QC Policy, and a
QC Policy can be followed by a QC Policy or no policy.

CL TC QC

continue evaluation continue evaluation

Figure 6: Control flow between Diffserv policies

There is nondeterminacy (i.e., there are alternatives) in
the execution order of TC and QC Policies. To resolve this
nondeterminacy, “continue evaluation” must be explicitly
specified when a policy evaluation is repeated. For exam-
ple, the following rule in a QC Policy is combined with
another rule (that tests the QID “shape2”) in the QC Policy.

if (DSCP is "AF11" or "AF12" or "AF13") {
SchedulingAlgorithm = "A-BW";
MaxQueueSize = 200 packets;
CommittedRate = 64 kbps;
QID = "shape2";
Continue evaluation;

}.

If no “continue evaluation” is specified, the rule is not fol-
lowed by another QC Policy rule.

5. APPLICATION OF POLICY COMBINA-
TION

Two cases of the application of policy combination in
PolicyXpert are explained here.

5.1 Separation of subscriber and service policies
Both network services and service subscribers, i.e., end
customers, can be managed by using policies. Policies for
service subscribers can be separated from the service poli-
cies by using CL and TC Policies as well as CIDs (shown
in Figure 7).

In a Diffserv network, three service classes, i.e., gold,
silver, and best-effort classes, can be defined. The same
DSCP can be used for both gold and silver classes, but the
policing rates for them, which are specified by TC Policy
rules, can be different; e.g., a gold traffic is policed to 1
Mbps, but a silver traffic is policed to 128 kbps. Then, two
different DSCPs are used, and three different CIDs, "G",
"S", and "B" (which represent subclasses of DSCP-based
classes), are used for gold, silver, and best-effort classes.
Service properties can be defined by the network adminis-
trator in a service policy, which is implemented by using a
TC Policy; each class of services is specified by a TC Pol-
icy rule. Subscriber properties can be defined by the net-
work operators in subscriber policies, which are
implemented by using CL Policies; each subscriber is
specified by a CL Policy rule. CIDs are used for mapping
or aggregating subscribers into service classes. The TC
Policy can then be deployed to all inbound edge interfaces
of the Diffserv network. Each CL Policy can be deployed
to an edge interface and contain rules connected to the
service policy rules in the TC Policy by CIDs. In Figure 7,
CL Policies 1, 2, and 3 (subscriber policies) are defined,
and they are deployed to three edge interfaces. There is
only one TC Policy (service policy), and it is deployed to
the same interfaces as the CL Policies.

When a subscriber is added or removed, the network
operator can modify only the relevant CL Policy and need
not modify the service policy. Particularly, multiple serv-
ice classes that share a DSCP are separated by using CIDs.
This separation of subscriber and service policies clearly
separates the task of the network administrator from the
task of the network operator. Subscriber and service poli-
cies are separated by using VFLs, but the policies cooper-
ates following a uniform policy semantics.

5.2 Hierarchical shapers and policers
In multi-service networks, hierarchical schedulers and
shapers can be used for harmonizing various types of traf-
fic. These functions can be represented by using QIDs and
a QC Policy. Each QC Policy rule represents a simple
queuing or scheduling method. QC Policy rules can be
combined by QIDs to represent a complex queu-

ing/scheduling method.
For example, a hierarchical shaper can be outlined as

shown in Figure 8. This QC Policy consists of n + 1 rules.
Rules Q1, …, Qn receive input traffic, and output traffic

shaped at a maximum of 64 kbps by using a bandwidth fair
queuing (A-BW1) method. Here, the input traffic is as-
sumed to have the QID value "" (empty string), the output
traffic has the QID value "Shape2", and “continue evalua-
tion” is specified in each of rules Q1, …, Qn. A-BW can
be mapped to an appropriate scheduling (queuing) method
implemented at the given network node. Rule Sc inputs the
aggregation of the shaped traffic from Q1, …, Qn,2 and
outputs traffic at a maximum of 10 Mbps by using a
bounded priority queuing (B-PQ) method.

Each of rules Q1, …, Qn models a queue, and rule Sc
models an A-BW scheduler that is followed by a B-PQ
scheduler that is not given explicitly. Other scheduling
methods, i.e., strict priority queuing (S-PQ) and per-flow
bandwidth fair queuing (P-BW), can also be specified in a
QC Policy rule.

A hierarchical policer can be represented in a similar
way to the above shaper, but the details are omitted here.

Note that, although a hierarchical shaping, scheduling,
or policing policy is complex, a simpler function, such as a
non-hierarchical shaping, scheduling, or policing function,
or marking function, can be represented by only a single
rule.

1 A-BW is an abbreviation of “aggregated bandwidth fair queuing”.
“Aggregated” means that this scheduling algorithm distinguishes
aggregated flows (by using DSCPs) but does not distinguish micro-
flows. This is different from the other bandwidth fair queuing algo-
rithm called “per-flow bandwidth fair queuing” (P-BW), which
distinguishes microflows and can be used for Packeteer’s Packet-
ShaperTM.
2 Rule Sc is shared among rules Q1, …, Qn, and is not copied; i.e.,
all the queues that are represented by Q1, …, Qn are connected to the
same scheduler that is represented by Sc. The semantics of a QID
differ in this way from those of a CID as described in Section 3.

premium rule

gold rule

best effort rule

...

TC PolicyCL Policy 1

rule for subscriber 1

rule for subscriber n

...

CL Policy 2
rule for subscriber 1’

rule for subscriber n’

... Diffserv network

CL Policy 3
rule for subscriber 1”

rule for subscriber n”

...

Subscriber
policies

Service
policy

Inbound edge interfaces

CIDs

CIDs

CIDs

CID = “P”

CID = “G”

CID = “B”

Figure 7: Separation of subscriber and service policies

SchAlg = “A-BW”
CommittedRate = 64 kbps

SchAlg = “A-BW”
CommittedRate = 64 kbps

SchAlg = “B-PQ”
Priority = “high”
ShapingRate = 10 Mbps

QID = "" QID = “Shape2”
Continue evaluation

Rule Q1

Rule Qn

Rule Sc
...

DSCP =
"AF2"

DSCP =
"AF1"

S = { Q1: if (QID is "" && DSCP is "AF1") {
Scheduling_Algorithm = "A-BW";
Committed_Rate = 64 kbps;
QID = "Shape2";
Enqueue;

},
…,

Qn: if (QID is "" && DSCP is "AF2") {
Scheduling_Algorithm = "A-BW";
Committed _Rate = 64 kbps;
QID = "Shape2";
Enqueue;

},
Sc: if (QID is "Shape2") {

Scheduing_Algorithm = "B-PQ";
Priority = "high";
Shaping_Rate = 10 Mbps;
QID = "Outgoing";
Enqueue;

} }
Figure 8: A hierarchical shaper

6. CONCLUSION
Policy combination is required to represent programmable
and customizable network functions such as those provided
by Diffserv. In PolicyXpert, policies of three types (i.e.,
CL, TC, and QC) and VFLs of three types (i.e., CIDs,
TIDs, and QIDs), for connecting policy rules, are defined
for Diffserv. The policy combination enables the repre-
sentation of complex Diffserv policies. TC and QC Poli-
cies, and TIDs and QIDs can be used in constructing such
representations. Policy combination in PolicyXpert also
allows sub-classing of DSCP-based service classes and the
separation of service and subscriber policies. CL and TC
Policies, and CIDs are available for this purpose. The
careful design of Diffserv policies has enabled simple
Diffserv policies to be represented in a simple form.

Future work on PolicyXpert will include the refinement
of the semantics of policy combination, especially the
evaluation order of rules that refers to VFLs.

ACKNOWLEDGMENT
We thank Toshio Shimojou of the Enterprise Server Divi-
sion, Hitachi, Ltd., and Rick Roeling of the Hewlett-
Packard Company for discussing on the policy design of
PolicyXpert with us.

REFERENCES
[Bak 01] Baker, F., Chan, K., and Smith, A., “Management

Information Base for the Differentiated Services Archi-
tecture”, draft-ietf-diffserv-mib-09.txt, Internet Draft,
IETF, March 2001.

[Ber 99] Bernet, Y., Binder, J., Blake, S., Carlson, M.,
Carpenter, B. E., Keshav, S., Ohlman, B, Verma, D.,
Wang, Z., and Weiss, W., “A Framework for Differen-
tiated Services”, draft-ietf-diffserv-framework-02.txt,
Internet Draft, IETF, February 1999.

[Ber 01] Bernet, Y., Blake, S., Grossman, D., and Smith,
A., “An Informal Management Model for Diffserv
Routers”, draft-ietf-diffserv-model-06.txt, Internet
Draft, IETF, February 2001.

[Car 98] Carlson, M., Weiss, W., Blake, S., Wang, Z.,
Black, D., and Davies, E., “An Architecture for Differ-
entiated Services”, RFC 2475, IETF, December 1998.

[Cha 01] Chan, K. H., Durham, D., Gai, S., Herzog, S.,
McCloghrie, K., Reichmeyer, F., Seligson, J., Smith, A.,
and Yavatkar, R., “COPS Usage for Policy Provisioning
(COPS-PR)”, RFC 3084, IETF, March 2001.

[Dur 00] Durham, D. (ed.), Boyle, J., Cohen, R., Herzog,
S., Rajan, R., and Sastry, A., “The COPS (Common
Open Policy Service) Protocol”, RFC 2741, IETF,
January 2000.

[Fin 01] Fine, M., McCloghrie, K., Seligson, J., Chan, K.,
Hahn, S., Smith, A., and Reichmeyer, F.,
“Differentiated Services Quality of Service Policy In-
formation Base”, draft-ietf-diffserv-pib-03.txt, Internet
Draft, IETF, March 2000.

[Hei 99] J. Heinanen, F. Baker, W. Weiss, and J. Wro-
clawski, “Assured Forwarding PHB Group”, RFC 2597,
June 1999.

[Her 00] Herzog, S ., ed., Boyle, J., Cohen, R., Durham,
D., Rajan, R., and Sastry, A., “COPS usage for RSVP”,
RFC 2749, IETF, January 2000.

[HP 00] HP OpenView PolicyXpert 2.0 Users Guide, Edi-
tion 1, Hewlett-Packard, October 2000.

[Jac 99] V. Jacobson, K. Nichols, and K. Poduri, “An Ex-
pedited Forwarding PHB”, RFC 2598, June 1999.

[Kan 00a] Kanada, Y., “A Representation of Network
Node QoS Control Policies Using Rule-based Building
Blocks”, International Workshop on Quality of Service
2000 (IWQoS 2000), pp. 161–163, June 2000.

[Kan 00b] Kanada, Y., “Two Rule-based Building-block
Architectures for Policy-based Network Control”, 2nd
International Working Conference on Active Networks
(IWAN 2000), Lecture Notes in Computer Science, No.
1942, pp. 195–210, Springer, October 2000.

[Kan 01a] Kanada, Y., “Taxonomy and Description of
Policy Combination Methods”, Workshop on Policies
for Distributed Systems and Networks (Policy 2001),
Lecture Notes in Computer Science, No. 1995, pp. 171–
184, Springer, January 2001.

[Kan 01b] Kanada, Y., and O’Keefe, B. J., “Combination
of Diffserv Policies in OpenView/JP1 PolicyXpert”, 5th
Asia-Pacific Network Operations and Management
Symposium (APNOMS 2001).

[Lup 99] Lupu, E., and Sloman, M., “Conflicts in Policy-
based Distributed Systems”, IEEE Trans. On Software
Engineering, Vol. 25, No. 6, pp. 852–869, 1999.

[Moo 01]Moore, B., Ellesson, E., Strassner, J., and
Westerinen, A., “Policy Framework Core Information
Model — Version 1 Specification”, RFC 3060, IETF,
February 2001.

[Nic 98] Nichols, K., Blake, S., Baker, F., and Black, D.,
“Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers”, RFC 2474, IETF,
December 1998.

[Sni 00] Snir, Y., Ramberg, Y., Strassner, J., and Cohen,
R., “Policy Framework QoS Information Model”, draft-
ietf-policy-qos-info-model-02.txt, Internet Draft, IETF,
November 2000.

