
A Representation of Network Node
QoS Control Policies

Using Rule-based Building Blocks

Yasusi Kanada
Hitachi Ltd., Central Reserach Laboratory

�IWQoS 2000 2000-6-6 By Yasusi Kanada (C) Hitachi Ltd.

Introduction

� Policy-based QoS-control
� Policy rules:

Administrator or Operator → Policy Server → Network Nodes

� Interfaces between Policy Servers and Network Nodes

❚ Protocols: SNMP, COPS, …

❚ APIs: CORBA, …

Node

Policy Server

Node

Node

Administrator
or Operator Policy rules

Policy rules

through SNMP,
COPS, CORBA, …

�IWQoS 2000 2000-6-6 By Yasusi Kanada (C) Hitachi Ltd.

A problem in the policy-control interfaces

� The grammar is limited.
� Grammar = Syntax + Semantics

� The syntax is limited.

❚ E.g., Only one value can be sent at a time by SNMP.

❚ E.g., Only function calls can be described by an API.

� The semantics is limited.

❚ Control structures cannot be expressed.

❚ Constraints cannot be expressed.

�IWQoS 2000 2000-6-6 By Yasusi Kanada (C) Hitachi Ltd.

A Solution

� To use a rule-based programming language for the
interface.

� The reasons
� A language is defined by a grammar.

❚ Our problem is limitation of grammar.

� Policy-based control is a matter of programming.

❚ A set of policies is a program,
because policies describe the behavior of network nodes.

� Policies are rule-based.

❚ A policy rule is (should be) an if-then rule.

�IWQoS 2000 2000-6-6 By Yasusi Kanada (C) Hitachi Ltd.

A Building-Block Architecture

� Each building block has
� One or more input ports.

� One or more output ports.

� An input and output ports are connected by a named pipe.

� An example: a Diffserv router setting

Policing:Classification:

otherwise ?
Discarding:
Algorithm=all

Scheduling:
high
low
Algorithm=prioritycase

Source_ip ==
192.168.1.* ?

Average_rate
<= 1Mbps ?

Marking:
DSCP = 46

case

Si C1 P1

P2

M1 So

Marking:
DSCP = 0

otherwise ?
Sother

Sother1

�IWQoS 2000 2000-6-6 By Yasusi Kanada (C) Hitachi Ltd.

SNAP: A Parallel Logic Language

� An example
� An informal description of a rule:

if (Source_IP == 192.168.0.1 && Source_port == 80)
DSCP = 46;

� The rule in SNAP:
filter_mark(Si, So) :–

filter[Source_IP = 192.168.0.1, Source_port = 80](Si, S1) |
mark[DSCP = 46](S1, So).

� Building-block syntax
� Basic syntax: bb_name(Si, So).

� General case:
class_name[parameters](Si1, Si2, …, Sin, So1, So2, …, Som).

�IWQoS 2000 2000-6-6 By Yasusi Kanada (C) Hitachi Ltd.

SNAP: A Parallel Logic Language (cont’d)

� SNAP is a descendant of parallel logic languages
� Parallel logic languages: Parlog, Concurrent Prolog, GHC, …

❚ Developed in 5th Generation Computer Project or similar projects.

� The reasons why a parallel logic language is used:

❚ Rule-based.

❚ Well-defined semantics suited for pipelined processing.

� Conditional control using a case structure:
or(c1 | a1 ; c2 | a2 ; … ; cn | an)
� Control structure is necessary because rules are structured:

Not like this, but like this

...

�IWQoS 2000 2000-6-6 By Yasusi Kanada (C) Hitachi Ltd.

Conclusion

� A rule-based language SNAP has been introduced.
� SNAP is for the interface between a policy server and network

nodes.

� SNAP enables
� Definition of building blocks by users

❚ Using primitive building blocks and case structures.

� Interoperable policy-based QoS control.

� Expressing wide variety of QoS functions.

� Future work
� Detailed specification of SNAP.

� Implementation of SNAP on a policy server and routers.

�IWQoS 2000 2000-6-6 By Yasusi Kanada (C) Hitachi Ltd.

SNAP: A Parallel Logic Language (cont’d)

� An informal description of a rule
� if (SrcIP == 192.168.1.*) {

if (average_rate <= 1Mbps) {
dscp = 46; queue_priority = high;

} else {
discard; };

} else {
dscp = 0; queue_priority = low; };

� The rule in SNAP
� ef_ingress(Si, So) :–

or(filter[SrcIP = 192.168.1.*](Si, C1) |
or(meter[Average_rate_max = 1Mbps](C1, P1) |

mark[DSCP = 46](P1, M1)
; otherwise(C1, P2) | discard(P2))

; otherwise(Si, Sother) |
mark[DSCP = 0](Sother, Sother1)),

schedule[Algorithm = priority](M1, Sother1, So).

	
IWQoS 2000 2000-6-6 By Yasusi Kanada (C) Hitachi Ltd.

Building Blocks for Diffserv

� Six types of primitive building blocks
� Filtering, Metering, Marking, Discarding, Scheduling, and

Merging (MUX) rules.

� A control structure and constraints
� Order of building blocks:

+---------+ or or
-->| Filter |---------------+-+------------------------------+-->

+---------+ ^ | | ^ ^ |
| +---------+ | | +---------+ | | +---------+ |
+-| Meter |-+ +->| Marker |-+ +-|Scheduler|-+

+---------+ | +---------+ +---------+
|
| +---------+
+->|Discarder|

+---------+

