
 Procedia Computer Science 34 (2014) 661 – 667

Available online at www.sciencedirect.com

1877-0509 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of Conference Program Chairs
doi: 10.1016/j.procs.2014.07.094

ScienceDirect

International Workshop on Software Defined Networks for a New Generation of
Applications and Services (SDN-NGAS-2014)

Providing Infrastructure Functions for Virtual Networks
by Applying Node Plug-in Architecture

Yasusi Kanada*
Central Research Laboratory, Hitachi, Ltd., Totsuka-ku Yoshida-cho 292, Yokohama 244-0817, Japan

Abstract

Although nodes in a network-virtualization infrastructure, which is called a virtualization node, usually contain a switch or a
router with sophisticated and high-performance functions such as Ethernet switching, VLAN, and IP routing, most of such
infrastructure functions cannot be reused as program components by slices. Accordingly, a method for providing such functions
to slices on a virtualization node (VNode) infrastructure, by applying the previously proposed plug-in architecture, is proposed.
This architecture defines two types of plug-ins, i.e., control plug-ins and data plug-ins, and interfaces for them. As for the
proposed method, the switch or router in the VNode is regarded as a data plug-in, and a control plug-in that allocates and isolates
the switch/router resources was developed. The data plug-in interface was customized to handle a data plug-in, i.e., a layer-3
switch in a VNode, and a control plug-in and the interfaces for providing layer-3/VLAN switch functions to slices were designed,
implemented, and evaluated. The evaluation result shows that instead of specifying a routing/switching program or method,
specifying only an additional 8 to 25 lines in a slice definition enables slice developers to use routing and switching functions.
© 2014 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Elhadi M. Shakshuki.

Keywords: Network-node plug-in architecture; Network virtualization; Virtualization node; VNode; In-slice switching; In-slice routing; Deep
programmability

* Corresponding author. Tel.: +81-50-3135-3485.

E-mail address: Yasusi.Kanada.yq@hitachi.com .

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of Conference Program Chairs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.07.094&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.07.094&domain=pdf

662 Yasusi Kanada / Procedia Computer Science 34 (2014) 661 – 667

1. Introduction

Various infrastructures for network virtualization, such as PlanetLab [Tur 07], GENI [Ber 14], and VNode
(virtualization node) [Nak 10][Nak 12], have been developed. By using such a network-virtualization infrastructure
(i.e., substrate), slices (i.e., virtual networks) are created and managed. These infrastructures enable flexible node
functions by providing deep programmability. They provide programmability of both slow paths (i.e., general-
purpose CPU-based hardware) and fast paths (i.e., specialized hardware such as network processors). However,
although nodes in the infrastructure usually contain a switch or router with sophisticated and high-performance
functions such as Ethernet switching, VLAN, and routing, most of these functions cannot be reused by slices.

For the VNode infrastructure, an Ethernet switching function is provided to slices by “network accommodation
equipment” (NACE or NC) [Kan 12b]; however, the functions of NACE are restricted. NACE enables high-speed
and large-capacity Ethernet switching in slices, but it is very specialized and does not provide any other functions.

This paper proposes a method for providing various infrastructure functions to slices on the VNode infrastructure
by applying the previously-proposed plug-in architecture [Kan 13][Kan 14a]. This architecture defines two types of
plug-ins, i.e., control plug-ins and data plug-ins, and plug-in interfaces for them. As for the proposed method, the
switch or router in the VNode is regarded as a data plug-in, which is called an internal plug-in, and a control plug-in
that allocates and isolates the switch/router resources is developed. A method for providing layer-3 (L3) or VLAN
switch functions (i.e., routing/switching functions) to slices was developed, implemented, and evaluated. Using the
control plug-in, operators and vendors can provide infrastructure functions easily, and slice developers can specify
functions implemented by the plug-ins very simply in slice definitions.

2. Related Work

Two categories of related work on generic network-node programmability and programmability of node
functions, such as routing or switching, are summarized here. The first category is generic network-node
programmability. A network-node function may be extended by using plug-ins and a protocol such as the ForCES
[Dor 10] or OpenFlow. The protocol separates centralized control-plane components from the data plane and defines
interfaces between these planes. In contrast, the proposed plug-in architecture defines distributed and corresponding
control-plane and data-plane components, i.e., plug-ins, and interfaces between plug-ins and a network node. In
addition, OpenFlow is not suited to handling non-standard headers, but the proposed method can be used for them.

The second category is node-function programmability. Providing network-node functions, such as switching or
routing, for slices by reusing infrastructure functions is focused on. As described by Casado [Cas 08], methods for
providing network-node functions have been categorized as the following three types. First, integrated-hardware-
based methods are conventionally used for commercial routers and switches. Second, software-centered methods
have been widely studied (e.g., [Egi 08]) because they make it easy to implement packet forwarding and routing.
Network-processor (NP)-based methods can be categorized as the second type, but it may achieve higher
performance. The third type is general-purpose hardware-based methods. An example of this type is the TCAM-
based method proposed by Casado. This method was succeeded by an OpenFlow-based method (e.g., [Boz 13]).

As for the developed method, an L3/VLAN switch and software are used in combination. This method is
software-centered, but it can be regarded as a method that extends integrated hardware, i.e., an L3/VLAN switch.

3. Outline of Plug-in Architecture

The basic VNode architecture, which enables computational and networking components of VNodes to be
independently developed, is reviewed in the following. A VNode [Nak 12][Kan 12a] is a type of physical node for
building a virtualization network infrastructure, which is called a VNode infrastructure. Virtual-network functions in
a VNode are categorized as computational functions or networking functions, which are represented by built-in types
of “node slivers” (i.e., virtual nodes) and “link slivers” (i.e., virtual links). A slice developer can define a slice by
writing a slice definition (a similar concept to resource specifications (RSpec) [Ber 14]) described in XML and sent
to the manager of the VNode infrastructure (i.e., the domain controller [Kan 12a] or VNet manager [Kat 13]).

663 Yasusi Kanada / Procedia Computer Science 34 (2014) 661 – 667

The VNode plug-in architecture and interfaces were previously proposed [Kan 13][Kan 14a]. Plug-ins can extend
both node and link functions of a VNode. There are two types of plug-ins: data plug-ins (which perform data-plane
functions such as packet forwarding) and control plug-ins (which manage the resources and configurations of a data
plug-in). A plug-in consists of hardware and software. A data plug-in may contain specialized hardware required for
guaranteeing high performance, isolation, and QoS of slices. Plug-ins are connected to a VNode by predefined
control/data plug-in interfaces (CPII/DPII), which should be built into the VNode (Fig. 1).

The operator or vendor of a VNode infrastructure can develop new functions by using a set of plug-ins, and slice
developers can then easily use them by specifying plug-ins or new types of nodes or links. Each development
scenario should have two stages, i.e., an experimental stage and an operational stage (Fig. 2). In the experimental
stage, the operator does not need to update VNodes; instead, slice developers must specify plug-ins and plug-in
parameters. However, in the operational stage, the operator authorizes and installs a set of plug-ins, and the slice
developers can define a new type of virtual node or link by using the same method as that used for the built-in types.

4. Application of Plug-in Architecture

The method for applying the VNode plug-in architecture to implement infrastructure functions is described in this
section. Especially, the interfaces for connecting an internal plug-in (i.e., part of the switch/router in the VNode) to a
VNode and the method for specifying virtual nodes or links that the plug-in implements are described.

4.1. Requirements for plug-ins and plug-in interfaces

A set of internal/external plug-ins that implement a virtual node or link function must satisfy the following three
conditions. First, control plug-ins must implement the CPII. Second, data plug-ins must implement the DPII. Third,
the most-important condition, is that control plug-ins must manage the resources of virtual nodes or links and isolate
resources of multiple instances of virtual node or link type. For example, because an L3 switch is not usually
designed for network virtualization, the control plug-in must map VLAN/IP resources to slices and manage per-slice
resources in order to isolate resources and slices. However, because the switch or router to be used as an internal
plug-in is usually fixed, that is, the components of a VNode cannot be replaced, the DPII must be flexible to connect
internal data plug-ins. In the case of L3 switches, the required interface is VLAN-based. If the DPII is properly
defined, the functions of the switch/router, such as switching and routing, can be provided to slices.

4.2. Plug-in interfaces for internal plug-ins

Unlike the cases described in previous papers [Kan 13][Kan 14a], to use an L3 switch as a data plug-in, all the
ports of virtual nodes must be identified by VLAN IDs instead of MAC addresses. VLAN IDs are used for port
identification (and for logical isolation of slices)
because, if two ports have the same VLAN ID, packets
do not pass through the virtual node but are bypassed
through the L3 switch.

The packet format used for this VLAN-ID-based

Fig. 1. Open VNode plug-in architecture

(a) Original stage (b) Experimental stage (c) Operational stage

Fig. 2. Proposed VNode evolution stages

SDMAC SSMAC SEType PVLAN Payload

(a) VLAN-ID-based DPII

PDMAC PSMAC PEType SDMAC SSMAC SEType Payload
(b) MAC-address-based DPII

Fig. 3. Comparison of two types of data plug-in interface (DPII)

VNode Control plug-in
interface (CPII)

Data plug-in
interface (DPII)

Plug-ins
Extended VNode

Control-plane
component

Data plug-in
(Packet handling

plug-in)

Data-plane
component

(Packet handler)

C-plane
D-plane

Control plug-in

VNode

Extended VNode

Redirector

Programmer

VNM

Redirector
component

Programmer

Redirector
component

Programmer

Redirector
component

Programmer
component

VNode plug-ins
New VNode in a
public testbed

Redirector

Programmer

New VNM

Redirector
component
Redirector
component
Redirector
component

Programmer
component

Programmer
component

Programmer
component

VNode in a
public testbed

Redirector
(a VNode

component)

Programmer
(a VNode

component)

VNM

Original
resources

Original
resources

New
resources

Original+new
resources

664 Yasusi Kanada / Procedia Computer Science 34 (2014) 661 – 667

DPII is compared with that used for the normal MAC-address-
based DPII in Fig. 3. Each field in the figure is explained as
follows. SDMAC and SSMAC are the MAC addresses on the
slice, and SEType is the Ethernet type of the slice. PVLAN is the
value for identifying the VLAN path. The field with PVLAN
exists between fields of the in-slice Ethernet; however, it belongs to the virtualization infrastructure. The whole
packet format is conformant to the VLAN (Ethernet) standards. PDMAC and PSMAC are the MAC addresses on
the infrastructure, and PEType is the Ethernet type of the infrastructure. As described above, the PVLAN field is
squeezed into the packet on the slice. If the DPII is MAC-address-based, the format of packets on slice is not
restricted, i.e., it can be non-IP and non-Ethernet. However, if the DPII is VLAN-ID-based, it can be non-IP but
must be an Ethernet format.

5. L3 Switch Functions to be Provided to Slices

Methods for providing two important functions of L3/VLAN switches, i.e., routing and switching, to slices by
using internal plug-ins are described in the following.

5.1. Routing function

When IP routing and forwarding is
required on a slice, it is advantageous to
implement it by using an internal plug-in that
uses the L3 switch functions. The control-
plane function, i.e., building a routing table,
is suited to software, but the data-plane
function, i.e., packet forwarding by using the
routing table, may require high-performance
processing, so specialized hardware is often
required. By using the virtual routing and
forwarding (VRF) function, which is a per-
VLAN IP-routing function that many L3
switches have, the plug-ins can provide a high-performance routing function to each slice. An in-slice routing
function can be visualized as shown in Fig. 4.

A slice definition for a virtual router is explained. Fig. 5 shows a simple definition in the experimental stage. In
the figure, the routing parameters are specified as P1=V1, …, Pn=Vn. Routing protocols such as RIP or BGP can be
specified, but OSPF is specified here. The following routing parameters can be given.
<param key="routing_protocol" value="ospf" /><param key="ospf_subnet" value="192.168.0.0" />
<param key="ospf_mask" value="0.0.15.255" /><param key="ospf_area" value="110" />
<param key="ospf_domain" value="1" /><param key="router_ip" value="192.168.101.1" />

These parameters specify the routing protocol, i.e., OSPF, the network that OSPF runs, the area, the domain, and
the IP address of the virtual router. VLAN IDs are assigned to ports p1, p2, and p3 by the same method as that used
by the switch plug-in. The IP addresses of these ports can be selected from the link subnet if a method for
negotiation between control plug-ins of two VNodes is implemented [Kan 14b]. However, currently, the addresses
must be specified explicitly by the following parameters.
<param key="ip_p1" value="192.168.1.0/255.255.255.0" />
<param key="ip_p2" value="192.168.2.0/255.255.255.0" />
<param key="ip_p3" value="192.168.3.0/255.255.255.0" />
In specifying this definition, the slice developer must avoid inconsistent configuration of the slice, which can be
avoided when the addresses are automatically negotiated.

In the operational stage, the implementation-dependent name and parameters are not specified in a slice
definition. However, the specification of the routing protocol, i.e., OSPF, and OSPF parameters, must be specified.
The slice definition corresponding to Fig. 5 is given as follows.

Fig. 4. Plug-in specification of routing function

<nodeSliver name="vrf1" …> <instance type="extension"> <params>
 <param key="PlugInName" value="intSw" /> <!-- Plug-in name --> <param key="DataPort" value="vlan" /> <!-- Specification of data plug-in interface (DPII) -->
 <param key="ControlPort" value="192.168.110.61" /> <!-- Specification of control plug-in interface (CPII) --> <param key="Command-runNodeSliver" value="run_vrf" /> <!-- Specification of CPI command for configuration -->
 <param key="Command-stopNodeSliver" value="stop_vrf" /> <!-- Specification of CPI command for de-configuration --> <!-- Other paramaters: --> <param key="P1" value="V1" /> <!-- A routing parameter -->
 … <param key="Pn" value="Vn" /> <!-- A routing parameter --> </params> </instance>
 <vports>…</vports> </nodeSliver>

Fig. 5. Slice definition for in-slice IP routing in the experimental stage

VRF
(routing
function)

VLAN V1

VLAN V2

VLAN V3p1
p2 p3

665 Yasusi Kanada / Procedia Computer Science 34 (2014) 661 – 667

<nodeSliver name="vrf1" …>
 <instance type="virtual_router">
 <params><param key="P1" value="V1" /> … <param key="Pn" value="Vn" /></params>
 </instance>
 <vports>…</vports>
</nodeSliver>

When introducing a three-port virtual router into a slice, a slice developer must specify 25 lines in the
experimental stage and 19 lines in the operational stage except comment lines to specify a virtual switch. Note that
comments in the slice definition are not counted in the lines.

5.2. Switching function

Packet switching, which is often required on slices, can be implemented by using an internal plug-in. Although
software switching can be used for packet switching, a VLAN switch function is used because it is superior in terms
of capacity and latency. Because a VLAN switch has a per-VLAN switching function, per-slice switching can be
implemented by mapping slices to VLANs. A virtual switch can be visualized as shown in Fig. 6(a).

Although a virtual switch is conceptually simple, the actual method for implementing it is complicated because of
restrictions on VLAN switch functions. Because an internal virtual-switch plug-in is connected to the data-plane
component of the VNode, i.e., the VLAN switch, it would be better to connect them internally in the switch, if
possible. However, although packets that belong to the same VLAN are switched among different physical ports in a
VLAN switch, packets must be switched among different VLANs on the same physical port. The packets of the
VLANs to be connected to the virtual switch must thus be extracted from the VLAN switch and input into it again
without changing the VLAN ID (see Fig. 6(b)). This method is the same as the one used for NACE [Kan 12b].

The slice definitions for the virtual switch are similar to those for the virtual router, so detailed explanation is
omitted. However, the command names (run_sw and stop_sw) or the name of the virtual-switch type
(virtual_switch) are used instead of run_vrf / stop_vrf or virtual_router. To specify a virtual switch, a
slice developer must specify 16 lines in the experimental stage and 8 lines in the operational stage except comment
lines. When the specified DPII (DataPort) is a VLAN, the management components of the VNode assign VLAN IDs
to all the ports specified by <vports>…</vports>. When ports p1, p2, …, pn are specified and VLAN ID v1, v2,
…, vn are assigned to the ports, pairs of the ports and VLAN IDs are passed as a command parameter to the plug-in
as command arguments of run_sw and stop_sw.

6. Prototyping and Preliminary Evaluation

To prototype and evaluate a virtual routing
function by using an internal plug-in, the CPII and
a control plug-in using this interface were designed,
implemented, connected to the L3 switch, and
preliminarily evaluated. The plug-in interfaces for
the internal plug-ins are being implemented in a
NACE, and a control plug-in (written in Perl) for both switching and routing is being developed. The control plug-in
receives parameters from the NACE through a command-line interface (CLI, i.e., CPII) and configures the switch by
using another CLI (telnet). Because the L3 switch is configured by both the management component of the NACE
and the control plug-in, it must be configured very carefully; that is, resources in the L3 switch must be isolated by
careful programming of both the control plug-in and the NACE because they are not isolated automatically by the
plug-in architecture. However, slice developers do not have to be concerned with this isolation.

The development of in-slice routing by using plug-in is explained as follows. The syntax of the command for
slice configuration is as follows.
run_vrf SliverId=<VirtNodeID> PlugInName=intSw ports=<PID>:<PVID>{+<PID>:<PVID>} \
 {ip_<PID>=<PIPaddress>/<PSubnet>} routing_protocol=ospf ospf_subnet=<RSubnet> \
 ospf_mask=<RSubnetMask> ospf_area=<OSPFArea> ospf_domain=<OSPFDomain> router_ip=<RouterIP>
Commands “run_vrf” and “stop_vrf”, which are specified in Fig. 5, are processed by the same program; that is,
in this plug-in implementation, the configuration and de-configuration are handled by the same program. The data

(a) Data plug-in interface (b) Implementation in VNode

Fig. 6. Plug-in specification and implementation of virtual switching function

VLAN V1

VLAN V2

VLAN V3

VLAN V4
switch

switchVLAN

V1-V4

Different
VLANs Same VLANSwitching

VLAN IDs here

666 Yasusi Kanada / Procedia Computer Science 34 (2014) 661 – 667

plug-in specified by “intSw” implements both
virtual switching and routing. Parameter ports

specifies pairs of ports of the virtual node and
VLAN IDs assigned to the ports. The IP addresses
and subnet masks are specified by parameters
ip_<PID> (i.e., ip_1, ip_2, and ip_3).
Parameters prefixed by “ospf_” are effective only
when OSPF is used for routing. The control plug-
in converts the above parameters to a command
and configures the L3 switch. For example, the
following command generates a VRF (virtual
router) that corresponds to virtual node vrf1,
generates and configures its three ports, and
configures OSPF.
run_vrf SliverId=vrf1 PlugInName=intSw ports=port1:100+port2:101+port3:102 \
 ip_port1=192.168.1.1/255.255.255.0 … ip_port3=192.168.3.1/255.255.255.0 \
 routing_protocol=ospf ospf_subnet=192.168.0.0 ospf_mask=0.0.15.255 ospf_domain=1 \
 ospf_area=110 router_ip=192.168.101.1

The in-slice routing was evaluated as follows. By using the control plug-in described above, OSPF routing on a
slice on a network with two L3 switches (two VNodes), which is shown in Fig. 7, was tested. In this test, two L3
switches (as data plug-ins) were configured (as shown in this figure) by the control plug-in. OSPF routing with this
configuration was confirmed to work correctly by the following two test results. First, ping packets were routed
correctly between two PC clients either when they were connected to the first or second slice. Second, when one of
the four physical links between two L3 switches was cut, the communication between the PCs was disabled, but it
was recovered after 40 to 50 seconds.

7. Concluding Remarks

A method for providing sophisticated and high-performance functions, such as Ethernet switching and IP routing
to slices on a VNode infrastructure, by using internal plug-ins is proposed. A previously developed data plug-in
interface was customized to handle an L3 switch in a VNode, and a control plug-in, and the interfaces for providing
L3 switch functions to slices, which are distributed to each node, were designed, implemented, and evaluated. The
evaluation result shows that instead of specifying a routing or switching program, specifying only an additional 8 to
25 lines in a slice definition enables slice developers to use routing and switching functions. Because the
implementation of plug-ins and an extended plug-in interface are in the draft stage, it must be finalized, the plug-in
installation, authentication, and authorization mechanisms should be built into VNodes, and the plug-in
implementation should be evaluated in future.

Acknowledgements

Part of the research results is an outcome of “Advanced Network Virtualization Platform Project A” funded by
the National Institute of Information and Communications Technology (NICT). The author thanks Akihiro Nakao
from The University of Tokyo, Satoshi Kamiya from NEC, and other members of the VNode Project for their
discussions on virtual-switch interfaces. He also thanks Yasushi Kasugai, Kei Shiraishi, Takanori Ariyoshi, and
Takeshi Ishikura from Hitachi for implementing the plug-in interfaces.

References

[Ber 14] Berman, M., Chase, J. S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D., Ricci, R., and Seskar, I., “GENI: A Federated
Testbed for Innovative Network Experiments”, Computer Networks, Vol. 58, January 2014.

[Boz 13] Bozakov, Z. and Papadimitriou, P., “OpenVRoute: An Open Architecture for High-performance Programmable Virtual Routers”,
IEEE HPSR’13, pp. 191–196, 2013.

Fig. 7. Network structure for in-slice OSPF routing experiment using two L3

switches

L3 switch (as data plug-in)

VRF

VRF

192.168.2.2/24

192.168.1.2/24

Controller PC
(Control
plug-in)

192.168.1.1/24

192.168.2.1/24

192.168.3.1/24

192.168.110.61/24

192.168.
110.111/24

1G1G

VLAN 100
VLAN 101

VLAN 102

VLAN 202

VLAN200
VLAN 201

2/7

2/8

L3 switch (as data plug-in)

VRF

VRF

192.168.2.2/24

192.168.1.2/24
192.168.1.1/24

192.168.2.1/24

192.168.3.1/24

1G

1G

VLAN 100
VLAN 101

VLAN 102

VLAN 202

VLAN200
VLAN 201

2/7

2/8

192.168.4.1/24

192.168.4.1/24

2/3

2/5

2/6

2/4

2/3

2/5

2/6

2/4

192.168.110.65/24

Slice 1

Slice 2

PC client
192.168.3.2/24

PC client
192.168.4.2/24

PC client
192.168.3.2/24

PC client
192.168.4.2/24

667 Yasusi Kanada / Procedia Computer Science 34 (2014) 661 – 667

[Cas 08] Casado, M., Koponen, T., Moon, D., and Shenker, S., “Rethinking Packet Forwarding Hardware”, 7th ACM SIGCOMM HotNets
Workshop, p. 11, October 2008.

[Dor 10] Doria, A., Hadi Salim, J., Haas, R., Khosravi, H., Wang, W., Dong, L., Gopal, R., and Halpern, J., “Forwarding and Control Element
Separation (ForCES) Protocol Specification”, RFC 5810, IETF, March 2010.

[Egi 08] Egi, N., Greenhalgh, A., Handley, M., Hoerdt, M., Huici, F., and Mathy, L., “Towards High Performance Virtual Routers on
Commodity Hardware”, 2008 ACM CoNEXT Conference, p. 20, December 2008.

[Kan 12a] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-Virtualization Nodes that Support Mutually Independent Development and
Evolution of Components”, IEEE ICCS 2012, November 2012.

[Kan 12b] Kanada, Y., Shiraishi, K., and Nakao, A., “High-performance Network Accommodation into Slices and In-slice Switching Using A
Type of Virtualization Node”, IARIA Infocomp 2012, October 2012.

[Kan 13] Kanada, Y., “A Node Plug-in Architecture for Evolving Network Virtualization Nodes”, SDN4FNS 2013, November 2013.
[Kan 14a] Kanada, Y., “A Method for Evolving Networks by Introducing New Virtual Node/link Types using Node Plug-ins”, IEEE/IFIP

SDNMO 2014, May 2014.
[Kan 14b] Kanada, Y., “Controlling Network Processors by using Packet-processing Cores”, NetMM 2014, May 2014.
[Kat 13] Katayama, Y., Yamada, K., Shimano, K., and Nakao, A., “Hierarchical Resource Management System on Network Virtualization

Platform for Reduction of Virtual Network Embedding Calculation”, APNOMS 2013, September 2013.
[Nak 10] Nakao, A., “Virtual Node Project”, NICT News, No. 393, pp. 1–6, Jun 2010.
[Nak 12] Nakao, A., “VNode: A Deeply Programmable Network Testbed Through Network Virtualization”, 3rd IEICE Technical Committee

on Network Virtualization, March 2012, http://www.ieice.org/~nv/05-nv20120302-nakao.pdf
[Tur 07] Turner, J., et al., “Supercharging PlanetLab ― High Performance, Multi-Application, Overlay Network Platform”, ACM SIGCOMM

Computer Communication Review, Vol. 37, No. 4, pp. 85–96, October 2007.

