
A Method for Evolving Networks by Introducing
New Virtual Node/link Types using Node Plug-ins

Yasusi Kanada
Central Research Laboratory, Hitachi, Ltd.

Totsuka-ku Yoshida-cho 292, Yokohama 244-0817, Japan
Yasusi.Kanada.yq@hitachi.com

Abstract—Network virtualization introduces two concepts:
slice (i.e., virtual network), which consists of virtual nodes and
links, and slice developer, which is the third role in networks.
Slice developers can introduce new network services by using
slices. A method for introducing new types of virtual nodes and
links for new services into the slice-definition language and the
virtualization infrastructure by evolving physical nodes (i.e.,
“virtualization nodes” or VNodes) is proposed. This evolution
consists of two stages: the experimental stage and the operational
stage. In the experimental stage, data and control plug-ins are
developed and tested by the operator or vendor by using
experimental sliver definitions. In the operational stage, which is
focused on in this study, the plug-ins are integrated into original
components in the infrastructure and are available for slice
development by using normal sliver definitions. By mapping type
names to plug-in identifiers and parameters, the proposed
method enables abstract and simple definitions of slices by slice
developers and authorization of plug-ins by the operator, but it
remains the loose integration of the new function, i.e., the plug-in
architecture used in the experimental stage. Prototyping and
evaluation demonstrates that this method greatly simplifies both
slice developers’ tasks and operators’ tasks.

Index Terms—Slice developer, Network-node evolution, Node
plug-in architecture, Data plug-in, Control plug-in, Network
virtualization, Virtualization node, VNode infrastructure,
Virtual-link type creation, Deep programmability.

I. INTRODUCTION

Development of new services generates new business
chances, stimulates economies, and also stimulates the
intelligence of users who may devise new ways of life or new
types of business. To increase the chance of creating new
communication services, it is important to make it simpler and
more flexible and to reduce its cost. If this development
becomes so, more and more people will try to create new
services and, in doing so, they will increase the chance of
creating successful new services.

To enable simple, flexible, and cost-reduced service
creation, network virtualization will play an important role by
introducing two concepts: slice and slice developer. As for the
first concept, network virtualization enables creation of various
types of virtual networks, which are called slices, on a single
physical network. Slices not only reduce development and
maintenance costs of customized networks but also realize

abstract, simple, and flexibly-customized networks because, if
the virtualization function satisfies the clean-virtualization
criteria [7], it enables creation of slices without being
constrained by the underlying physical network. This means
that any set of protocols, which is not constrained by the IP or
Ethernet protocols or any other underlying protocols, can be
used on slices, and any virtual topology can be created.
Network virtualization therefore enables creation of new
services with reduced cost.

As for the second concept, network virtualization creates a
new role called slice developer [21]. In the case of
conventional networks, there are two roles: operator and user.
Operators (including vendors) develop and operate physical
networks, and (end) users contract with an operator and use the
networks. However, because network virtualization generates
slices, they must be created and managed by the third role, i.e.,
the slice developer. Slice developers develop slices, they (or
their application programs) operate the slices, and users
contract with a slice developer and use the slice. In this three-
role model, an operator may be called an infrastructure
provider, and a slice developer may be called a service
provider [4]. Slice developers create a slice by selecting types
of virtual nodes and links that are supported by the network-
virtualization infrastructure, and they are allowed to program
virtual nodes (and virtual links) if they are programmable.

The Virtualization Node Project, or VNode Project [17],
has developed a virtualization infrastructure, called “VNode
infrastructure”, which makes it possible to create slices that is
deeply programmable (that means the data-plane of the slices
is programmable) by slice developers. The slices are defined
(programmed) and managed by a centralized method, but the
virtual nodes are programmed and controlled by a decentral-
ized method. The programmed slices enable simple, flexible,
and reduced-cost new services; that is, each slice developer
independently, easily, and flexibly creates and manages a slice
that supports a new service while development cost is reduced.

In the VNode infrastructure, slice developers can create and
program any number of virtual nodes of predefined types by
using a slice-definition language; however, they cannot
introduce new types and new software/hardware into the
language and the infrastructure by themselves, so the
infrastructure should have a method for introducing them.
Although the infrastructure may sufficiently support various

978-1-4799-0913-1/14/$31.00 ©2014 IEEE

types of virtual nodes at the time of infrastructure development,
new types of hardware and software, which can be used for
building a new type of virtual node or link, will become
available through technical innovations. A method for
introducing new types of virtual nodes and links by evolving
the infrastructure should therefore be developed. If such a
method is available, new types of hardware or software can be
introduced by operators (or vendors) by using this method, and
slice developers can use the new node/link types enabled by
that hardware or software.

The VNode infrastructure also enables components of a
VNode to be evolved independently [7], and a methodology to
evolve the components independently in two stages, i.e. the
experimental and operational stages, was proposed and
partially evaluated [11]. In the experimental stage, new types
of virtual nodes and links are introduced by developing data
and control plug-ins. In the operational stage, the data plug-ins
are integrated into original data components, and the control
plug-ins are integrated into original control and management
components. In that study, a plug-in architecture and plug-in
interfaces for the experimental stage were focused on, and
methods for integrating plug-ins in the operational stage were
not described.

In the operational stage, which the present study focuses on,
the plug-in integration can be tight or loose according to the
needs and available cost; if the integration is tighter (that is,
optimal combinations of virtual nodes and links as well as
hardware and software is selected by the platform), it incurs
more cost. A tight integration requires specific type-dependent
tasks. In contrast, if the integration is loose, a plug-in
architecture can be kept in the operational stage, and a more
generic method, which is proposed in this study, can be used.
For the integration, plug-ins to be integrated must be
authorized by the operator. A method for the authorization
must therefore be developed.

The rest of this paper is organized as follows. Section II
describes operations performed by operators and slice
developers as well as programmability of a virtualization
infrastructure and virtual networks in the VNode architecture.
Section III describes the method for two-stage evolution of
VNodes by connecting and programming plug-ins for the
VNode infrastructure. Section IV focuses on the management
of plug-ins for the operational stage of the VNode evolution.
Section V first describes prototype plug-ins that implement this
architecture and then presents the results of an evaluation and a
discussion of this architecture. Section VI describes related
work, and Section VII gives a conclusion.

II. OPERATION AND PROGRAMMABILITY OF VNODE

ARCHITECTURE

Network virtualization, the structure of a virtualization
infrastructure, the structure of the virtual network, and slice
definition and management methods, which were previously
proposed, are described here.

A. Network virtualization

When many users and systems share a limited amount of
resources on computers or networks, virtualization technology

creates the illusion that each user or system owns resources of
their own. Many programmable virtualization-network
research projects have been carried out, and many models,
including PlanetLab [20], VINI [1], GENI [2][5], and Genesis
[15], have been proposed. Slices are created by network
virtualization using a virtualization infrastructure (substrate)
that operates the slices.

In the VNode Project, network-virtualization technology
was developed by Nakao et al. [17][18]. This technology
makes it possible to build programmable virtual-network
environments in which slices are isolated logically, securely,
and in terms of performance (QoS) [9]. In these environments,
new-generation network protocols can be developed on a slice
without disrupting other slices.

B. Structure of virtualization infrastructure

In the VNode Project, it is assumed that a physical network
consists of one or more domains, which are managed by a
virtualization network manager (VNet manager) [13]. The
VNet manager was formerly called the domain controller (DC)
[18][7]. It receives a slice definition, which is a design diagram
of a slice, through a Web-based portal and distributes it to
VNodes in the virtualization infrastructure. The concepts of
slice and slice definition in this infrastructure are defined in the
following subsections. Each domain has two types of nodes:
VNode and gateway (Fig. 1).

An overlay technology is used in the VNode infrastructure;
that is, a VNode forwards packets on the infrastructure, and
each packet contains the contents of a virtual packet in a slice
as the payload. VNodes are connected by tunnels using a
protocol such as Generic Routing Encapsulation (GRE) [6],
and the Internet Protocol (IP) is used in the current version of
the virtualization infrastructure. If the IP is used in a slice, the
packet format is very close to that of NVGRE [19]; however,
non-IP protocols can also be used in a slice. A domain may
contain conventional routers or switches that do not have
virtualization functions, and VNodes can be distributed to any
place connected by the IP. An arbitrary packet format and
protocol can be used in a slice, so they can be used in a VNode
anywhere.

A VNode consists of two data-processing components, a
programmer and a redirector, and a control component, a
VNode manager [13]. The programmer implements virtual
nodes. It enables “deep” (data-plane) programmability of
virtual nodes. The redirector implements virtual links between
virtual nodes by using the overlay technology.

Gate-
way

Gate-
way

User’s
PC/VM

User’s
PC/VM

VNet
manager

VNode

VNode VNode

IP
router VNode

VNet manager:
Virtualization network
manager

VNode: Virtualization node
VNM: VNode manager
R: Redirector
P: Programmer

VNode
VNM

P R

Fig. 1 Physical structure of virtualization platform

C. Structure of slices

In the VNode infrastructure, a slice is a virtual network that
consists of the following two components (Fig. 2) [17][18].
• Node sliver (virtual-node resource) represents computa-

tional resources that exist in a VNode (in a programmer). It
is used for node control or protocol processing of arbitrary-
format packets. A node sliver, which may be slow-path, i.e.,
a general-CPU-based virtual machine (VM), or fast-path,
i.e., a specialized high-performance hardware-based virtual
node that requires a special type of software. Programma-
bility of node slivers is deep; that is, slice developers can
program not only the control plane but also the data plane.

• Link sliver (virtual-link resource) represents networking
resources such as a virtual link that connects two node
slivers and that any IP or non-IP protocols can be used on.
A link sliver is mapped on a physical link between two
VNodes or a VNode and a gateway. A link sliver is
generated by slicing physical-network resources such as
bandwidth.

A slice developer can define a slice by specifying and
combining these components and by programming and setting
up node slivers.

D. Slice definition and management

A slice developer can create a slice by specifying a slice
definition by using an XML-based language and sending the
definition to the VNet manager (through the “northbound
interface”). A slice definition is a set of specifications of the
virtual network structure (such as shown in Fig. 2), nodes, and
links. It may also contain virtual-to-physical node mappings.
The developer can also manage the slice through the VNet
manager. When creating a slice, the VNet manager maps the
node/link slivers to the physical nodes/links [13] and
distributes the slice definition to each VNode manager (through
the “southbound interface”), which sends the necessary defi-
nitions to the data-processing components of the VNode (i.e.,
the programmer and the redirector): they receive information
required for configuring node/link slivers.

For example, a slice definition may contain a link-sliver
specification such as the following (i.e., a link sliver with two
virtual ports, i.e., end points: vport1 and vport2). This type of
link sliver is GRE (GRE link sliver).
<linkSliver type="link" subtype="GRE">
 <vports>
 <vport name="vport1" />
 <vport name="vport2" />
 </vports>
</linkSliver>

III. TWO-STAGE EVOLUTION METHOD FOR VNODE

The method for evolving VNodes in two stages [11] is
described in the following. The architecture and interfaces used

in the experimental stage are reviewed and explained more
first.

A. Evolution stages

As for the proposed VNode-evolution method, operators
(or vendors) can use plug-ins for developing new functions,
such as creating, operating, or deleting new types of virtual
node or link for slice developers in two stages (see Fig. 3)
except the original stage. The experimental stage is mainly for
the operator or vendors to develop new subcomponents of the
VNode components as plug-ins, which are experimental
components of the VNode infrastructure, and connect them to
the components (Fig. 3(b)). Plug-ins consists of hardware and
software. The operational stage is to merge the plug-ins into
the components and to create an evolved VNode.

An “evolvable” VNode is created for the experimental
stage and, in this stage, the plug-ins can be updated at any time
without affecting the operation of the original VNode. Not only
the data-processing components of the original VNode but also
the control and management components (i.e., the VNet
manager and the VNode manager) remain unchanged. They all
manage the resources and the configuration of the original
virtualization infrastructure, but they do not manage the
resources and configurations of plug-ins.

The resources and configurations of a plug-in with data-
plane functions, which is called a data plug-in, must be
managed by another plug-in, which is called a control plug-in.
A data plug-in may contain specialized hardware required for
high performance, isolation, and QoS of slices. Because the
resource managers are separated and the original managers do
not recognize the new resources, such as new types of virtual
node, virtual link, physical sub-node, and physical link, the
original resources and the new resources must be completely
separated.

If the data-processing components and the control and
management components of the VNode are designed to
exclude interference between them and newly introduced plug-
ins, a publicly available infrastructure can be used for
developing new functions. The original VNode is probably
placed in places, such as a carrier’s building, that are not easily
accessible for temporary experimental purposes. However, the
plug-ins can be placed in private environments for experiments,
such as university laboratories or offices of vendors.

The slice-development environment in the experimental
stage of the VNode evolution is not friendly to slice developers.
However, early adopters can define and use slices.

VNode

VNode VNode

IP Router VNode GatewayGateway User’s
PC/VM

User’s
PC/VM

Node
sliver 3

Node
sliver 4

Node
sliver 2

Node
sliver 1

Link sliver 1

Link sliver 2

Link sliver 3

Link sliver 4 Link sliver 5

Link sliver 6 Link sliver 7

Fig. 2 Example of slice design
VNode

Extended VNode

Redirector

Programmer

VNM

Redirector
component

Programmer

Redirector
component

Programmer

Redirector
component

Programmer
component

VNode
extensions New VNode in a

public testbed

Redirector

Programmer

New VNM

Redirector
component
Redirector
component
Redirector
component

Programmer
component

Programmer
component

Programmer
component

VNode in a
public testbed

Redirector

Programmer

VNM

Original
resources

Original
resources

New
resources

Original+new
resources

(a) Original stage (b) Experimental stage (c) Operational stage

Fig. 3 Proposed VNode evolution stages

In the operational stage, an “evolved” VNode is created
(Fig. 3(c)); that is, the plug-in functions developed in the
experimental stage are integrated into the core part of the
infrastructure. The data-plug-in functions are merged into the
original data-processing component, and the functions of
control plug-ins are merged into the original control and
management components. Because the resource managers are
merged into the core part, the original and new resources are
also merged. As a result, they may be able to select the best
method and resource from various methods and resources that
were originally implemented in the VNode and added to it for
fulfilling slice developers’ requests. Slice developers can use
the new function in a similar way as other functions.

B. Plug-in architecture and interfaces

The plug-in architecture described here is used in the
experimental stage. Plug-ins are connected to a VNode by
using a predefined interface called an open VNode plug-in
interface (OVPI) [11], which should be built into the data-
processing components of the VNode (i.e., the programmer and
the redirector) (see Fig. 4).

The proposed plug-in architecture supports data-plane
programmability and programmability of decentralized control
in addition to programmability of centralized control, which is
also supported by conventional software-defined networking
(SDN) technologies. The data-plane (D-plane) programma-
bility of a data plug-in and the control-plane (C-plane)
programmability of a control plug-in are combined to
implement a new type of virtual node or link. The data-plane
and control-plane functions are separated but can be flexibly
integrated; that is, the management interface between a control
plug-in and a data plug-in may be a private interface, which has
no predefined specification. Moreover, the plug-in architecture
supports new functions created by combinations of software
and hardware. Although new software is focused on in the case
of future networks, new hardware will also be required.

There are two types of OVPI: a D-plane interface and a C-
plane interface. The D-plane interface connects data plug-ins
handling data packets to slow-path or fast-path components
(and to software and/or hardware components) or to a switch
(which is a part of the redirector). The C-plane interface
connects the control plug-ins that manage the data plug-ins and
the control subcomponents of the data-processing components
(i.e., programmer manager or the redirector manager). Many
methods can be used to implement for an OVPI. For the C-

plane interface, command-line interfaces (CLIs) and APIs
(such as remote procedure calls or XMLs) can be used.

For a control plug-in, the following identifiers and
parameters, which are explained more in a previous paper [11],
must be specified in a control message of an OVPI. The host
name or address specifies the host that contains the plug-in. In
usual cases, a domain name or an IP address is used, but a non-
IP address or another type of name may also be used. The plug-
in identifier specifies a plug-in in the host. This identifier may
be structured; namely, plug-ins may be hierarchical. The
parameters specify control information including information
that identifies the slice that the information represents.

For a data plug-in, the following tag (i.e., identifier) and
parameters must be specified in a data packet as an OVPI. The
plug-in channel tag specifies a collection (or a channel) of
plug-ins. A collection of plug-ins is specified because, in
contrast to the C-plane interface, there is usually no identifier
that uniquely specifies a host or a plug-in. The tag may be a
protocol parameter such as a VLAN identifier. The plug-in
parameters are specified as protocol parameters.

The identifiers and parameters in an OVPI (for control or
data plug-in) must be supplied by the slice definition in the
experimental stage. Examples of slice definitions are described
in the next section.

IV. SLICE DEFINITION AND MANAGEMENT OF NEW TYPES OF

NODES AND LINKS

Slice developers can use new types of virtual nodes or links
(i.e., node slivers or link slivers), which are implemented by
using plug-ins. In this section, the representations of virtual
nodes and links in a slice definition (which are implemented in
VNodes) are described, and the method for creating and man-
aging the nodes and links by the management and control com-
ponents of the VNode infrastructure is explained. The focus of
this paper is on the operational stage. However, to contrast the
two stages, the method for the experimental stage, which was
called “the first step” [11], is also explained here.

A. Definition and management in experimental stage

In the experimental stage, to use the new types of virtual
nodes or links, slice developers must specify the identifiers and
parameters used in an OVPI in the slice definition. Although
the plug-ins and their interfaces (OVPIs) can be evolved
(updated) continuously, the original control components of
VNodes are kept unmodified. The identifiers and parameters
must therefore be specified externally, so they are specified by
the slice definition.

Two examples of virtual-node and virtual-link definitions
are shown in Fig. 5. The first example, shown in Fig. 5(a), is a
virtual node (node sliver) implemented by a set of plug-ins.
The host name or address is specified by a parameter named
“ControlPort”, which specifies a CLI (for the control plug-ins).
The default TCP port number is 23, but a different port may be
specified as “ControlPort”. The data port, such as a MAC
address, VLAN ID, or a physical port name that the data plug-
in is connected to, can be specified by “DataPort”. The data
port is connected to the programmer (slow paths and fast paths)

Controller
OVPI for
Control
Plug-ins

OVPI for
Data

Plug-ins

Control plug-ins

Data plug-ins

VNM

VNode
Extended VNode

Programmer
manager

Redirector
manager

Redirector
control plug-in

Slow paths
& fast paths

(Programmer part)

Switch
(Redirector part)

C-plane
D-plane

Programmer
control plug-in

Redirector
data plug-in

Programmer
data plug-in

Fig. 4 Open VNode plug-in (OVPI) architecture

and the control port is connected to the programmer manager.
Other parameters such as “Command-reserveNodeSliver” are
command names of the CLI. These commands are called when
the virtual node is set up, run, and stopped. See the previous
paper [11] for command-parameter examples. There may be
other commands such as operation and management (OAM,
e.g., statistics) commands so more parameters may be specified,
but they can be omitted here.

The second example, shown in Fig. 5(b), is a virtual link
implemented by a set of plug-ins. If the type of virtual link is
built-in, the definition is the same as shown in Section II-D.
Because a virtual link connects two virtual nodes in two
VNodes, two sets of control and data plug-ins are specified.
The control ports are CPIl1-addr and CPIl2-addr, which are
connected to the redirector manager, and the data ports are
DPIl1-port and DPIl2-port, which are connected to the switch
(a part of the redirector). Because two control plug-ins contain
the same program, the command names for the OVPI are
assumed to be the same for both VNodes, namely, ls_setup_1,
ls_setup_2, and so on.

Although the slice definition that uses plug-ins are
complicated, such as shown in Fig. 5, it should ideally be
abstract as shown in Section II-D. However, in the experi-
mental stage, the original control and management components
cannot abstract these identifiers and parameters because they
do not recognize them. Moreover, these detailed specifications
of identifiers and parameters, such as the domain names or
addresses of the control plug-ins and physical data ports, such
as MAC addresses, are convenient for developments in this
stage. However, in the operational stage, these node/link defi-
nitions are too complicated for slice developers. The slice defi-
nition should therefore be simplified in the operational stage.

B. Definition and management in operational stage

In the operational stage, slice developers specify the new
types of virtual nodes or links in slice definitions in mostly the
same way as they specify built-in types. The final versions of
plug-ins developed in the experimental stage are used as sub-
components of the VNode components. The hardware for the
plug-ins may be moved closer to the VNode or moved inside
the chassis of the VNode. Although the functions of the plug-
ins and OVPI are not modified, the plug-ins should be
authorized by the operator and should be authenticated by the
network management component of the platform (i.e., the
VNet manager). In this stage, to integrate the plug-ins, the
original control components are modified, and the authenti-
cation information may have to be introduced to the plug-ins.
With this method, however, the modification is minimum, and
the tasks of the operator becomes much easier and less costly.

By using the plug-in installation method proposed here,
slice developers can write slice definitions for new types of
virtual nodes or links, which are mostly the same as slice
definitions for built-in types. The definitions, however, contain
the names of the new types. The modified VNet manager and
node control components (i.e., programmer manager, redirector
manager, and VNode manager) contain tables to map the type
names and authenticate the plug-ins and the identifiers and the
parameters used in the OVPI. Therefore, it can map the names
to them. The resources of the new types of nodes and links are
continued to be managed by the plug-ins. However, the
operator must examine the functions of the plug-ins and
authorize them by registering the plug-in names and
authentication information to the table. This integration process
can be called the installation of the plug-ins.

Two examples, which use the same plug-ins as those
described in the previous subsection, are shown in Fig. 6. The
first example (Fig. 6(a)) is a virtual-node definition. The
second example (Fig. 6(b)) is a virtual-link definition. The
syntax of these definitions are the same as those of built-in
types, so they are abstract, simple, and friendly to slice
developers. The only difference between predefined and newly
introduced types is the subtype names, i.e., “node-type-1” and
“link-type-1” in Fig. 6. These identifiers specify the sets of
plug-ins indirectly. An updated control component must
translate these identifiers to the identifiers and the parameters
of the plug-ins.

The mapping table shown in Table 1 enables this
translation and also enables authentication and authorization of

<nodeSliver>
 <instance type="…">
 <params>
 <param key="PlugInName" value="virtual-node-1"/>
 <param key="ControlPort" value="CPIn-addr"/>
 <param key="DataPort" value="DPIn-port"/>
 <param key="Command-reserveNodeSliver"
 value="ns_setup"/>
 <param key="Command-runNodeSliver"
 value="ns_run"/>
 <param key="Command-shutdownNodeSliver"
 value="ns_stop"/>
 </params>
 </instance>
 <vports>
 <vport name="vport1"/>
 …
 <vport name="vportN"/>
 </vports>
</nodeSliver>

(a) Virtual-node definition

<linkSliver type="link" …>
 <vports>
 <vport name="vport1">
 <params>
 <param key="ControlPort" value="CPIl1-addr"/>
 <param key="DataPort" value="DPIl1-port"/>
 </params>
 </vport>
 <vport name="vport2">
 <params>
 <param key="ControlPort" value="CPIl2-addr"/>
 <param key="DataPort" value="DPIl2-port"/>
 </params>
 </vport>
 </vports>
 <params>
 <param key="PlugInName" value="virtual-link-1"/>
 <param key="Command-reserveLinkSliver1"
 value="ls_setup_1"/>
 <param key="Command-reserveLinkSliver2"
 value="ls_setup_2"/>
 <param key="Command-reserveLinkSliver3"
 value="ls_setup_3"/>
 <param key="Command-runSliver"
 value="ls_run"/>
 <param key="Command-shutdownSliver"
 value="ls_stop"/>
 </params>
</linkSliver>

(b) Virtual-link definition

Fig. 5 A new type of virtual-node/link definitions for experimental stage

plug-ins. Although all the information concerning this mapping
is shown in a single table here, the information common to the
whole platform should be managed by the VNet manager, and
information on each VNode should be managed by the VNode
(by the redirector manager and the programmer manager).
Control plug-in identifiers and authentication information in
Table 1 are used for authenticating and authorizing plug-ins.
They are managed by the VNet manager, but they are sent to
VNodes that contain the plug-ins for the sake of authentication.
“Commands” in the control plug-in column of this table mean
a list of command names for the OVPI. The list of VNodes for
each virtual node or link type (i.e., VNode0, VNode1, and
VNode2 in Table 1) contains all the VNodes that have the
plug-in for the type.

A VNode to be used for each virtual node in this slice is not
necessarily specified in the slice definition. Virtual nodes are
mapped by the VNet manager. The control component can thus
search the table and find the plug-in identifiers and parameters.

Unlike resources of built-in types of nodes and links, the
resources of these new types of nodes and links are managed
by control plug-ins, but not by the VNet manager. The network
(resources) used by the new type of links must be independent
from networks managed by the VNet manager. Therefore, the
operator cannot collect resource information of all the networks
from the VNet manager, and the VNet manager cannot choose
resource types or optimize the whole resource usage. These are
the major drawbacks of the plug-in method compared with a
method with merging resource management functions

proposed by the previous paper [11]. However, the advantages
of this method outweigh these drawbacks.

C. Control information tunneling for link management

In both the experimental and operational stages, a technique
called control information tunneling (CIT), which was
mentioned by the previous paper [11], is required for
implementing a new type of virtual links. By using CIT,
VNodes exchange virtual link parameters for control plug-ins
connected to the VNodes.

To create and manage a new type of link between two
VNodes, the control plug-ins in the VNodes need to exchange
link parameters, which cannot be controlled by the original
control components of the VNodes (see Fig. 7). For example, if
a GRE-based link type is predefined in the infrastructure,
control components, must have a negotiation mechanism,
which exchanges the end-point IP addresses and the GRE key
used for the virtual link [12]. The exchanged values are sent to
the control plug-ins as parameters of the OVPI (CLI) com-
mands. However, this mechanism may be unable to exchange
other types of parameters. CIT is a mechanism that allows any
types of link parameters to be exchanged. The parameters
should be passed through the inter-VNode control plane
without interpreting or testing it. For example, if the new type
of link is a VLAN-based virtual one, the control plug-ins may
exchange MAC addresses and a VLAN identifier by using CIT.

V. PROTOTYPING AND EVALUATION

A version of the OVPIs was implemented, and a set of
plug-ins was connected by using the OVPIs and partially
evaluated. The hardware and software for the OVPIs and the
plug-ins, the design, implementation, and preliminary results of
an evaluation of the plug-ins, and the evaluation methods and
results are described below.

A. Hardware and software environment for plug-ins

A preliminary version of the OVPIs was implemented in
VNodes (in the redirectors) [11]. A CLI was used for the C-
plane interface, and a VLAN-based interface was used for the
D-plane interface. Data plug-ins were implemented in two sets
of PCs with CentOS (Linux). Each PC had a PCIe board with a
network processor, Cavium Octeon® [3]. A hardware-inde-
pendent language called “Phonepl” (portable high-level open
network-processing language) for network processors [10],
which was called CSP, was used for developing the plug-in
programs. Control plug-ins were then implemented in the PCs.

<nodeSliver>
 <instance type="…" subtype="node-type-1">
 … // No plug-in parameters here
 </instance>
 <vports>
 <vport name="vport1"/>
 …
 <vport name="vportN"/>
 </vports>
</nodeSliver>

(a) Virtual-node definition

<linkSliver type="link" subtype="link-type-1">
 <vports>
 <vport name="vport1"/>
 <vport name="vport2"/>
 </vports>
 // No plug-in parameters here
</linkSliver>

(b) Virtual-link definition

Fig. 6 Definitions of new types of virtual-node/link for operational stage

Table 1 Plug-in parameter mapping table

Keys Control plug-in Data plug-in
node-type-1 Control plug-in identifier

Authorization information
Commands

Data plug-in identifier
Authentication information

VNode0 CPIn0-addr DPIn0-port
VNode1 CPIn1-addr DPIn1-port
VNode2 CPIn2-addr DPIn2-port

link-type-1 Control plug-in identifier
Authorization information
Commands

Data plug-in identifier
Authentication information

 VNode0 CPIl0-addr DPIl0-port
VNode1 CPIl1-addr DPIl1-port
VNode2 CPIl2-addr DPIl2-port

Controller

Redirector
manager

Switch
(Redirector

part)

OVPI for
Control
Plug-ins

(CLI)

OVPI for
Data

Plug-ins
(VLAN)

Controller

Redirector
manager

Switch
(Redirector

part)

OVPI for
Control
Plug-in
(CLI)

OVPI for
Data

Plug-ins
(VLAN)

Control
plug-in

Data
plug-in

Control
plug-in

Data
plug-in

VNM

Inter-VNode
Networks

VNode VNode
Extended

VNode
Extended

VNode
Linux PC Linux PC

←→ Exchanging virtual link parameters

New type of
virtual links
(link slivers)

C-plane
D-plane

VNM

Inter-VNode C-plane

Fig. 7 Plug-in and interaction architecture for a new type of virtual links

B. Implementation of a new type of virtual link

A prototype of evolving and evolved VNodes (i.e., both in
the experimental and operational stages), which implements a
new type of virtual link, was developed. A set of OVPIs and a
set of plug-ins that implements a new type of virtual link for
both stages were developed, and a preprocessor for the
operational stage was developed. GRE-based virtual links were
the only type available in the current version of VNodes, so
VLAN-based virtual links were implemented by using the
plug-ins. The D-plane function of this prototype was described
previously [11].

The control and management components accept slice
definitions with the same format as in the experimental stage.
In the present development, these components were not
modified; instead, the preprocessor in this prototype translates
slice definitions for the operational stage into those for the
experimental stage. The preprocessor contains the whole
mapping table. The preprocessor, which is written in Perl, is
used before the slice definition is sent to the Web-based portal.
This implementation method greatly reduces the number of
tasks performed by the operator.

A set of OVPIs and the plug-ins were developed as follows.
The set of OVPIs is a preliminary version of the one described
in Section IV. The plug-in installation method described in
Section IV-C has not yet been fully developed; that is, only a
link-creation function without authentication was developed.
The control plug-in, which is written in C and runs on CentOS,
sends a control packet to the data plug-in, which is written in
Phonepl and consists of both data and control procedures. The
control procedure, which adds or deletes a virtual link, works
on a packet-processing core, and receives and processes a
control packet [12].

The function of the control plug-in is explained below. As
described in Section IV-B, to operate a virtual link correctly,
control plug-ins in two VNodes, which are the end-points of
the virtual link, must exchange control parameters through the
inter-VNode C-plane. Because the virtual link to be created is
VLAN-based, MAC addresses (and a VLAN identifier) must
be exchanged. However, CIT has not yet been implemented,
and VNodes currently only have the negotiation function of
GRE-based virtual links. Therefore, in this preliminary
implementation of a new type of virtual link, the GRE-based
link parameters, i.e., IP addresses (and a GRE key), are passed
to the control plug-ins and are mapped to VLAN-based link
parameters, i.e., MAC addresses (and a VLAN ID).

C. Evaluation

A slice definition that contains two virtual nodes in two
VNodes and a virtual link between them was evaluated as
follows. The syntax of the node and link definitions is close to
those described in Fig. 7. The preprocessor described above,
which translates the simple definition to a definition that
contains plug-in parameters, was used in this evaluation.

The original slice definition (for the operational stage) and
the translated slice definition (which can be used in the
experimental stage) are compared in Table 2. The lengths
(numbers of lines) of the slice definitions and the numbers of

the implementation-dependent parameters, which should be
hidden from the slice developer, are listed in this table.

The slice definition, which is identical to the one generated
by the preprocessor, was sent to the Web-based portal, and a
slice was created. Successful IP communication between the
virtual nodes in this slice, connected by the VLAN virtual-link
was confirmed by a ping command. Although virtual links in
VNodes can transmit arbitrary format packets such as IPEC
packets [8], IP was used because it requires only two OS
commands (i.e., ifconfig and ping) built into the virtual
node. The performance of a whole network composed of the
prototype evolved VNodes was not measured, but the
throughput of the data plug-in was measured to be 9 Gbps or
more when the packet size was 900 bytes or larger. Although
the slice developer must perform an extra step, i.e.,
preprocessing, the proposed VNode evolution method has a
benefit for the slice developer compared with the previously-
proposed method used in the experimental stage [11].

VI. RELATED WORK

OpenFlow [16] and other SDN technologies enable
separation of control and data, programmability of the control
plane, and centralization of network control. Network
infrastructures including network nodes can be virtualized, and
the control plane is evolvable by using these technologies.
However, conventional SDN does not support data-plane
programmability and programmability of decentralized control.
These functions are also required in future networks. The plug-
in architecture proposed in this paper also supports these
functions in combination with programmability of centralized
control.

JUNOS® SDK [14] of Juniper Networks supports service
components as plug-ins. Each plug-in consists of control and
data components. However, only one instance of a service
component is created by using JUNOS SDK. This architecture
is different from the plug-in architecture proposed in this paper,
which supports creation of a type of virtual nodes or links by
operators (or vendors) and enables creation of multiple
instances of components by slice developers.

VII. CONCLUSION

A method for introducing new types of virtual nodes and
links into a network virtualization infrastructure by evolving a
physical node, which is called a “VNode”, is proposed. This
evolution consists of two stages, and the operational stage was
focused on in the present study. By mapping type names to
plug-in identifiers and parameters, the proposed method
enables abstract and simple definitions of slices by slice
developers and authorization of plug-ins by the operator, but it
remains the loose integration of a new function, i.e., a plug-in
architecture, which is used in the experimental stage. This

Table 2 Result of comparing link type definitions

Link type definition Definition
length (lines)

Implementation-
dependent parameters

Original (for experimental stage) 7 0
Translated (for operational stage) 14 4

extended VNode architecture supports a combination of
programmable data-plane and control-plane components (i.e.,
plug-ins) and a combination of a decentralized (node-internal)
and centralized (network-wide) control of the components.
Moreover, the plug-in architecture supports new functions
created by combinations of software and hardware.

A prototype based on this method was developed using
VNodes and evaluated. The prototyping and evaluation
demonstrates that this method greatly simplifies both slice
developers’ tasks and operators’ tasks; that is, both the slice
specifications and the processes in the operational stage are
much simplified and the changing needs of slice developers
will be satisfied with reduced cost. In addition, because the
proposed method may have benefits (including security
benefits) for both the slice developer and the operator, it may
be better to install and to authorize the plug-ins before they are
initially used.

Future work includes developing a method for integrated
operation and management of plug-ins distributed in a
virtualization platform. It also includes implementing CIT and
implementing new types of virtual links and network
accommodation methods, including non-IP-protocol-based
ones, by using advanced technologies and methods. It also
includes applying the VNode-evolution method to VNodes in
JGN-X testbed.

ACKNOWLEDGMENTS

Part of the research results is an outcome of “Advanced
Network Virtualization Infrastructure Project A” funded by the
National Institute of Information and Communications
Technology (NICT). The author thanks Kazuhisa Yamada
from NTT, Akihiro Nakao from the University of Tokyo,
Toshiaki Tarui from Hitachi, and other members of the above
project for their valuable discussions on the VNode evolution
and installation processes. The author also thanks Yasushi
Kasugai, Kei Shiraishi, Takanori Ariyoshi, and Takeshi
Ishikura from Hitachi for implementing the plug-in interfaces
in the redirector.

REFERENCES

[1] Bavier, A., Feamster, N., Huang, M., Peterson, L., and Rexford,
J., “In VINI Veritas: Realistic and Controlled Network
Experimentation”, SIGCOMM 2006, pp. 3–14, September 2006.

[2] Berman, M., Chase, J. S., Landweber, L., Nakao, A., Ott, M.,
Raychaudhuri, D., Ricci, R., and Seskar, I., “GENI: A Federated
Testbed for Innovative Network Experiments”, Computer
Networks, Vol. 58, No. 1, January 2014.

[3] “OCTEON Programmer’s Guide, The Fundamentals”, Cavium
Networks, 2010.

[4] Chowdhury, N. M. M. K. and Boutaba, R., “Network Virtualiza-
tion: State of the Art and Research Challenges”, IEEE Commu-
nications Magazine, Vol. 47, No. 7, pp. 20–26, July 2009.

[5] Duerig, J., Ricci, R., Stoller, L., Strum, M., Wong, G., Carpenter,
C., Fei, Z., Griffioen, J., Nasir, H., Reed, J., and Wu, X.,
“Getting Started with GENI: A User Tutorial”, ACM SIGCOMM
Computer Communication Review, Vol. 42, No. 1., pp. 72–77,
January 2012.

[6] Farinacci, D., Li, T., Hanks, S., Meyer, D., and Traina, P.,
“Generic Routing Encapsulation (GRE)”, RFC 2784, IETF,
March 2000.

[7] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-
Virtualization Nodes that Support Mutually Independent
Development and Evolution of Components”, IEEE
International Conference on Communication Systems (ICCS
2012), November 2012.

[8] Kanada, Y. and Nakao, A., “Development of A Scalable Non-
IP/Non-Ethernet Protocol With Learning-based Forwarding
Method”, World Telecommunication Congress 2012 (WTC
2012), March 2012.

[9] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-resource
Isolation for Virtualization Nodes”, IEICE Trans. Commun., Vol.
E96-B, No. 1, pp. 20-30, 2013.

[10] Kanada, Y., “Open, High-level, and Portable Programming
Environment for Network Processors”, IEICE 7th Meeting of
Network Virtualization SIG, July 2013 (in Japanese).

[11] Kanada, Y., “A Node Plug-in Architecture for Evolving
Network Virtualization Nodes”, 2013 Software Defined
Networks for Future Networks and Services (SDN4FNS),
November 2013.

[12] Kanada, Y., “Controlling Network Processors by using Packet-
processing Cores”, 2nd International Workshop on Network
Management and Monitoring (NetMM 2014), May 2014.

[13] Katayama, Y., Yamada, K., Shimano, K., and Nakao, A.,
“Hierarchical Resource Management System on Network
Virtualization Platform for Reduction of Virtual Network
Embedding Calculation”, 15th Asia-Pacific Network Operations
and Management Symposium (APNOMS 2013), September 2013.

[14] Kelly, J., Araujo, W., and Banerjee, K., “Rapid Service Creation
using the JUNOS SDK”, ACM Workshop on Programmable
Routers for Extensible Services of Tomorrow 2009
(PRESTO’09), pp. 7–11, 2009.

[15] Kounavis, M., Campbell, A., Chou, S., Modoux, F., Vicente, J.,
and Zhuang, H., “The Genesis Kernel: A Programming System
for Spawning Network Architectures”, IEEE J. on Selected
Areas in Commun., vol. 19, no. 3, pp. 511–526, 2001.

[16] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.,
Peterson, L., Rexford, J., Shenker, S., and Turner, J.,
“OpenFlow: Enabling Innovation in Campus Networks”, ACM
SIGCOMM Computer Communication Review, pp. 69–74, Vol.
38, No. 2, April 2008.

[17] Nakao, A., “Virtual Node Project ― Virtualization Technology
for Building New-Generation Networks”, NICT News, No. 393,
pp. 1–6, Jun 2010.

[18] Nakao, A., “VNode: A Deeply Programmable Network Testbed
Through Network Virtualization”, 3rd IEICE Technical
Committee on Network Virtualization, March 2012.

[19] Sridharan, M., et al., “NVGRE: Network Virtualization using
Generic Routing Encapsulation”, draft-sridharan-virtualization-
nvgre, work in progress, IETF.

[20] Turner, J., Crowley, P., Dehart, J., Freestone, A., Heller, B.,
Kuhms, F., Kumar, S., Lockwood, J., Lu, J.,Wilson, M.,
Wiseman, C., and Zar, D., “Supercharging PlanetLab ― High
Performance, Multi-Application, Overlay Network Platform”,
ACM SIGCOMM Computer Communication Review, Vol. 37,
No. 4, pp. 85–96, October 2007.

[21] Yamamoto, T., Katayama, Y., Yamada, K., and Nakao, A., “A
Management Model for the Network Virtualization Platform to
Provide Network Programmability”, World Telecommunications
Congress 2012 Workshop “SDN and OpenFlow”, March 2012

