

1

A Node Plug-in Architecture
for Evolving Network Virtualization Nodes

Yasusi Kanada
Central Research Laboratory, Hitachi, Ltd.

Totsuka-ku Yoshida-cho 292, Yokohama 244-0817, Japan
Yasusi.Kanada.yq@hitachi.com

Abstract – Virtualization nodes, i.e., physical nodes with
network virtualization functions, contain computational and
networking components. Virtualization nodes called
“VNodes” enabled mutually independent evolution of
computational component called programmer and
networking component called redirector. However, no
methodology for this evolution has been available.
Accordingly, a method for evolving programmer and
redirector and developing new types of virtualized
networking and/or computational functions in two steps is
proposed. The first step is to develop a new function without
updating the original VNode, which continues services to
existing slices, using a proposed plug-in architecture. This
architecture defines predefined interfaces called open
VNode plug-in interfaces (OVPIs), which connect a data and
a control plug-ins to a VNode. The second step is to merge
the completed plug-ins into the original programmer or
redirector. A prototype implementation of the above plug-in
architecture was developed, tested, and evaluated. The
prototype extends the redirector by adding new types of
virtual links and new types of network accommodation.
Estimated throughputs of a VLAN-based network
accommodation and a VLAN-based virtual link using
network processors are close to a wire rate of 10 Gbps.

Keywords – Network-node plug-in architecture, Data plug-
in, Control plug-in, Network virtualization, Virtua lization
node, VNode, Virtual link, Network processors.

I. INTRODUCTION

In Japan, several projects targeting new-generation
networks (NwGNs) have been conducted [Aoy 09]

[AKA 10]. These projects aim to develop new network
protocols and architectures (i.e., the “clean slate”
approach [Fel 07]) as well as various applications that are
difficult to run on IPs but work well on NwGNs. In the
Virtualization Node Project (VNP), a virtualization-
platform architecture consisting of virtualization nodes
(VNodes), namely, a “VNode architecture,” was
developed by Nakao et al. [Nak 10]. They have also
developed a high-performance, fully functional,
virtualization testbed in JGN-X, which is a testbed widely
used by network researchers. The goal of this VNP is to
develop an environment in which multiple slices (virtual
networks) with independently and arbitrarily designed
and programmed NwGN functions run concurrently, but
are logically isolated, on a physical network.

The VNode architecture enabled mutually independent
development and evolution of programmers, i.e., pro-
grammable computational node-components in VNodes,
and redirectors, i.e., networking node-components in
VNodes [Nak 12] [Kan 12a]. In future, a VNode may
contain various types of programmers and redirectors. If

they are modular, and the interface between them is
clearly defined and works efficiently, each vendor can
develop software and/or hardware components indepen-
dently from other components. No method for this VNode
evolution, however, has been available.

In the present study, such a method for evolving
VNodes, especially for developing advanced redirectors
and new types of virtual links, is proposed. By means of
this method, a VNode is evolved in two steps. The first
step is to develop a new redirector or programmer
component as software and/or hardware plug-ins and to
install and to connect them to the redirector or the
programmer of an existing VNode, without updating the
original VNode, through predefined open interfaces. The
VNode can continue services to existing slices because
they are isolated from slices that use the plug-ins.
Combinations of data and control plug-ins are used. The
second step is to merge the plug-ins into the redirector or
the programmer and, thereby, to create an evolved
VNode. Plug-in interfaces and prototype plug-ins were
implemented, and the evolved VNode can be used to
create new types of virtual links and new methods of
network accommodation.

The rest of this paper is organized as follows.
Section II describes the method for virtualizing a network
on the evolvable architecture platform and the inde-
pendently evolvable VNode architecture. Section III de-
scribes the two proposed evolution steps, and Section IV
describes the plug-in architecture for the first step of the
evolution including the open VNode plug-in interface
(OVPI) and control and data plug-ins. Section V first
describes a prototype plug-ins that implements this
architecture and then presents the results of an evaluation
of this architecture. Sections VI describes related work,
and Section VII gives some concluding remarks.

II. METHOD FOR NETWORK-V IRTUALIZATION

Network virtualization, the structure of a virtualization
platform (i.e., a physical network), and the structure of
the virtual network are described as follows.

A. Network virtualization
When many users and systems share a limited amount of
resources on computers or networks, virtualization
technology creates the illusion that each user or system
owns resources of their own. Concerning networks, wide-
area networks (WANs) are virtualized by using virtual
private networks (VPNs). When VPNs are used, a
physical network can be shared by multiple organizations,
and these organizations can securely and conveniently use
VPNs in the same way as virtual leased lines. Nowadays,

2

networks in data centers are virtualized as VLANs, while
servers are virtualized as virtual machines (VMs).

Many programmable virtualization-network research
projects have been carried out, and many models,
including PlanetLab [Tur 07], VINI [Bav 06], GENI
[Due 12], and Genesis [Kou 01], have been proposed.
Slices are created by network virtualization using a
virtualization platform (substrate) that operates the slices.

In the VNP, network-virtualization technology was
developed by Nakao et al. [Nak 10][Nak 12]. This
technology makes it possible to build programmable
virtual-network environments in which slices are isolated
logically, securely, and in terms of performance (QoS)
[Kan 13a] In these environments, new-generation
network protocols can be developed on a slice without
disrupting other slices.

B. Structure of virtualization platform
In the VNP, a physical network is assumed to consist of
one or more domains, which are managed by a service
network controller (SNC) and a transport network
controller (TNC). SNC was formerly called a domain
controller (DC) [Nak 12][Kan 12a]. Each domain has two
types of nodes: VNode and gateway (Figure 1).

An overlay technology is used in the current version of
VNode platform; that is, a VNode forwards packets on
the platform, and each packet on the platform contains the
contents of a virtual packet in a slice as the payload.
VNodes are connected by tunnels using a protocol such as
Generic Routing Encapsulation (GRE) [Far 00], and the
Internet Protocol (IP) is used in the current version of the
virtualization platform. A domain may contain
conventional routers or switches that do not have
virtualization functions. A slice is therefore neither
constrained by the topology of the physical network nor
by the specific functions of these nodes. A VNode can
operate as a router or a switch for platform packets, so it
can be deployed in conventional networks. VNodes can
thus be distributed to any place connected by the IP. An
arbitrary packet format and protocol can be used in a
slice, so they can be used in a VNode anywhere.

A VNode consists of three components: a programmer,
a redirector, and a VNode manager. A programmer
processes packets on slices. Slice developers can inject
programs into programmers. A redirector forwards
(redirects) packets from another VNode to a programmer
or from a programmer to another VNode. A VNode
manager (VNM) (a software component) manages the
VNode according to instructions from the SNC.

C. Structure of slices
In the virtual-network model developed by the VNP, a
virtual network is called a slice, which consists of the
following two components (Figure 2) [Nak 10][Nak 12].

• Node sliver (virtual-node resource) represents compu-
tational resources that exist in a VNode (in a
programmer). It is used for node control or protocol
processing of arbitrary-format packets. A node sliver is
generated by slicing physical computational resources.

• Link sliver (virtual-link resource) represents network-
ing resources such as a virtual link that connects two
node slivers and that any IP and non-IP protocols can
be used on. A link sliver is mapped on a physical link
between two VNodes or a VNode and a gateway. A
link sliver is generated by slicing physical-network
resources such as bandwidth.

Both node slivers and both link slivers are isolated and
work concurrently, so two slices that consist of these
slivers are also isolated and work concurrently.

The SNC of a domain receives an abstract slice design
by using an XML-based slice definition. The SNC
distributes the slice definition to each VNM, which sends
the necessary definitions to the programmer and the
redirector: the programmer receives information required
for configuring a node-sliver, and the redirector receives
the information required for configuring link slivers. For
example, a slice definition may contain an abstract link-
sliver specification such as the following link sliver with
two virtual ports, i.e., end points: vport0 and vport1.
<linkSliver type="link" name="virtual-link-1">
 <vports>
 <vport name="vport0" />
 <vport name="vport1" />
 </vports>
</linkSliver>

D. Independent evolution of programmers and redirectors
An aim of the VNP is to enable mutually independent
development and evolution of programmers and redirec-
tors. Programmers consist of programmable hardware and
software and implements node slivers. Redirectors consist
of flexible (and maybe programmable) hardware and
software and implement link slivers. It is necessary to
establish modularity of these components to enable their
independence; in other words, the interfaces between the
components (both data-plane and control-plane inter-
faces) must be clearly defined.

In future, virtualization platforms will probably consist
of computational and networking hardware and software
developed by various vendors. A VNode may contain
various types of computational components, such as
Linux VMs, Microsoft Windows VMs, network
processors, and GPGPUs. A network composed of
VNodes may consist of various types of networking
components, such as VLAN, WDM, and light paths.

Gate-
way

Gate-
way

User’s
PC/VM

User’s
PC/VM

SNC,
TNC

VNode

VNode VNode

IP
router VNode

SNC: Service network
controller

TNC: Transport network
controller

VNode: Virtualization node
VNM: VNode manager
R: Redirector
P: Programmer

VNode
VNM

P R

Figure 1. Physical structure of virtualization platform

VNode

VNode VNode

IP Router
VNode

GatewayGateway User’s
PC/VM

User’s
PC/VM

Node
sliver 3

Node
sliver 4

Node
sliver 2

Node
sliver 1

Link sliver 1

Link sliver 2

Link sliver 3

Link sliver 4 Link sliver 5

Link sliver 6 Link sliver 7

Figure 2. Example of slice design

3

If the interface between the software/hardware
components and subcomponents is clearly defined and
works efficiently, a component can be evolved
independently from other components, and the
components will be modular. That means they can be
freely chosen and used in combination and can be freely
enhanced or replaced by other components in accordance
with emergence of new technology. No method for this
evolution, however, has been available.

III. PROPOSED EVOLUTION STEPS

The proposed method for evolving VNodes is explained
as follows. This method is applicable to not only VNodes
but also other types of nodes for software-defined
networks (SDNs). However, the architecture described in
the previous section is assumed for simplicity.

As for the proposed method, redirector/programmer
plug-ins are used for developing new functions, such as
creating or deleting new types of virtual node or link, in
two steps (see Figure 3). The first step is to develop new
subcomponents of redirector or programmer as plug-ins
and to install and to connect them to the redirector or the
programmer of an existing VNode. The second step is to
merge the plug-ins into the redirector or the programmer
and to create an evolved VNode.

An “evolvable” VNode is created in the first step; that
is, in this step, the plug-ins can be updated at any time
without affecting the operation of the original VNode.
Not only the redirector and the programmer in the
original VNode but also the SNC and TNC (i.e., network
managers) and the VNM (i.e., the management part of the
VNode) remain unchanged. They manage the resources
and the configuration of the original virtualization
platform, but they do not manage the resources and the
configuration of plug-ins.

The plug-ins can be tested by using newly created
slices that specify the VNode and the plug-in. The VNode
can continue services to existing slices while the plug-ins
are developed because the existing slices do not use the
plug-ins and are isolated from the testing slices. If the
VNode has isolation function that separates packets
generated by the plug-ins from packets for existing slices,
the plug-ins can be tested without significant interfe-
rences with existing slices.

The resources and the configuration of the plug-ins
must be managed by the plug-ins themselves. Because the
resource managers are separated and the original
managers do not know the new resources, the original
resources and the new resources must be completely
separated. The new resources may be new types of virtual

node with a new type of network processor, new types of
virtual link, or new types of physical subnode or link. If
information on the plug-ins must be exchanged between
two or more VNodes through the management
components, the information should be passed through
the components without interpreting or testing it. This
tunneling mechanism can be called control information
tunneling (CIT).

If redirectors, programmers, and the management
components, i.e., SNC, TNC, and VNM, are designed to
exclude interference between them and newly introduced
plug-ins, a publicly available platform can be used for the
development of new functions. It was intended to apply
this method to JGN-X, i.e., a testbed that contains
VNodes. The original VNode is probably placed in a
place, such as a carrier’s building, that is not easily
accessible for temporary experimental purposes. How-
ever, the plug-ins can be placed in private environments
for experiments, such as university laboratories or offices
of vendors, and are connected by a layer-2 network such
as a VLAN or a layer-2 tunnel over IP networks.

In the second step, an evolved VNode is created; that
is, the plug-in functions developed in the first step are
introduced into the core part of the platform. The
programmer data-plug-in functions are merged into the
programmer, the redirector data-plug-in functions are
merged into the redirector, and the functions of control
plug-ins developed in the fist step are introduced into the
management components including programmer man-
ager, redirector manager, SNC, TNC, and VNM. Because
the resource managers are merged into the core part, the
original and new resources are also merged. As a result,
they can select the best method and resource from various
methods and resources that were originally implemented
in the VNode and added to it for fulfilling slice
developers’ requests.

IV. OPEN VNODE PLUG-IN ARCHITECTURE

A. Outline
The plug-in architecture described in this section is used
in the first step of the VNode evolution. Plug-ins are
installed and connected to a VNode using a predefined
interface called an open VNode plug-in interface (OVPI),
which should be built into both the programmer and the
redirector of the VNode (see Figure 4).

There are two types of OVPI: a data-plane (D-plane)
interface and a control-plane (C-plane) interface. The D-
plane interface connects data plug-ins that handle data
packets to slow-path or fast-path components (software

VNode

Extended VNode

Redirector

Programmer

VNM

Redirector
component

Programmer

Redirector
component

Programmer

Redirector
component

Programmer
component

VNode
extensions New VNode in a

public testbed

Redirector

Programmer

New VNM

Redirector
component
Redirector
component
Redirector
component

Programmer
component

Programmer
component

Programmer
component

Step 1 Step 2

VNode in a
public testbed

Redirector

Programmer

VNM

Original
resources

Original
resources

New
resources

Original+new
resources

(a) Original VNode (b) Evolving VNode (c) Evolved VNode

Figure 3. Proposed VNode evolution steps

Controller OVPI for
Control
Plug-ins

OVPI for
Data

Plug-ins

Control plug-ins

Data plug-ins

VNM

VNode
Extended VNode

Programmer
manager

Programmer
data plug-in

Redirector
manager

Redirector
control plug-in

Slow paths
& fast paths

(Programmer part)

Switch
(Redirector

part)

C-plane
D-plane

Programmer
control plug-in

Redirector
data plug-in

Figure 4. Open VNode plug-in (OVPI) architecture

4

and/or hardware components) in the case of programmer
extension or to a switch (which is a part of the redirector)
in the case of redirector extension. The C-plane interface
connects control plug-ins that manage the data plug-ins
and the programmer manager or the redirector manager.
The data and control plug-ins are therefore used in
combination. The management interface between a
control plug-in and a data plug-in is a private interface,
which has no predefined specification.

Plug-ins may be placed at a distant place from the
VNode. A VNode may exist in a publicly available
network, and the plug-ins may exist in a private
environment such as a university laboratory.

Many implementation methods can be used for the
OVPI. For control plug-ins, command-line interfaces
(CLIs) and APIs (such as remote procedure calls or
XMLs) can be used. Because an OVPI is an interface
connected through networks, the host name or the (IP)
address is required to identify the host node of the plug-in
in the case of a control plug-in. In the case of data plug-
ins, packet headers such as VLAN header or GRE can be
used. Interface parameters can be passed through
procedure arguments, XML tags, VLAN identifiers, GRE
keys, and so on.

B. C-plane plug-in interface
The following identifiers and parameters must be
specified in a control message of an OVPI for a control
plug-in.

1. Host name or address specifies the host that contains
the plug-in. In usual cases, a domain name or an IP
address is used, but a non-IP address or another type of
name may also be used.

2. Plug-in identifier specifies a plug-in in the host. This
identifier may be structured; namely, plug-ins may be
hierarchical.

3. Parameters specify control information including
information that identifies the slice that the information
represents. Plug-in parameters may be named or
positional; that is, each parameter may have an
identifier and a value or parameter values may be
specified in a specific order without identifiers.

Two examples of C-plane interfaces are described
here. A CLI is used in the first example. In this example,
the host name or address is specified as the ssh/telnet
server’s domain name or address, a command name (or a
file name) can be used for the plug-in identifier, and
command arguments can be used for specifying
parameters. For example, the following command with
named parameters may be used for creating a virtual-link
plug-in (see section V-C):

add_link vlan=id esmac=p1 edmac=p2 ismac=p3.

This command specifies a set of control information for a
data plug-in; namely, it specifies an addition of a virtual
link (i.e., link sliver) between external virtual ports
specified as p1 and p2 by the specified VLAN identifier
(id). Virtual port p3 specifies the internal port of the node.
In this example, all the parameters are named and can be
specified in an arbitrary order.

The second example is as follows. The same contents
are specified by an XML-based interface, such as XML-

RPC [XML] or SOAP [Mit 03]. In this case, the plug-in
identifier and the parameters are passed to the host as
XML elements and attributes.

In general, identifiers and parameters in an OVPI must
be supplied by the slice definition or the VNode (i.e.,
redirector, programmer, or VNM). An example of a link-
sliver specification, which is similar to the link sliver
shown in section II-D, is shown below. This definition
contains the domain names or addresses of the control
plug-ins and the physical data ports of data plug-ins. The
VLAN identifier and MAC addresses are not included in
this definition because they are generated by the VNodes
and the control plug-ins.
<linkSliver type="link" name="virtual-link-1">
 <vports>
 <vport name="vport0"
 <params>
 <param key="controller" value="plug-in-0-addr" />
 <param key="port" value="data-plug-in-0-port"/>
 <!-- Additional parameters -->
 </params>
 </vport>
 <vport name="vport1"
 <params>
 <param key="controller" value="plug-in-1-addr" />
 <param key="port" value="data-plug-in-1-port"/>
 <!-- Additional parameters -->
 </params>
 </vport>
 </vports>
 <params>
 <param key="ExtensionName" value="vlan_link" />
 <!-- Additional parameters -->
 </params>
</linkSliver>

C. D-plane plug-in interface
The following parameters must be specified in a data
packet as an OVPI for a data plug-in.

1. Plug-in channel tag: In contrast to the C-plane
interface, a host and a plug-in are not specified
separately. A tag, which may be a protocol parameter
such as a VLAN identifier, specifies a channel or a
collection of plug-ins. Multiple plug-ins specified by a
tag may be in one host or distributed to multiple hosts
connected by a network channel (such as a VLAN).

2. Parameters: Plug-in parameters are specified as
protocol parameters. Some parameters identify the
slice of the data path that the plug-in implements.
Some parameters may be used for identifying a plug-in
among the plug-ins specified by the plug-in channel
tag.

Two examples of D-plane interfaces are described
here. In the first example, a VLAN is used for the D-
plane protocol. In this case, the plug-in channel tag may
be specified as a VLAN identifier. The parameters, which
represent the end-point addresses of the virtual link, are
expressed as source and destination MAC addresses. If
only one (or a few) VLAN identifier can be used or if no
tagged VLANs can be used, plug-ins may be
distinguished by a set of MAC addresses; in other words,
they can be used for specifying both a plug-in tag and
parameters.

In the second example, GRE/IP is used for the D-plane
protocol. In this case, the plug-in tag is represented by a
key in the GRE header, and the parameters are
represented by addresses in the IP header.

5

V. PROTOTYPING AND EVALUATION

A version of the OVPIs was
implemented, and two sets of plug-ins
were installed and connected by using
the OVPIs and partially evaluated.
The hardware and software for the
OVPIs and the plug-ins are described
below first; the design,
implementation, and preliminary
results of an evaluation of the plug-
ins are described after that.

A. Hardware and software
environment for plug-ins

The prototype system and the
environment used for prototyping and
evaluation are described as follows. A preliminary
version of the OVPIs is implemented in the redirectors of
the VNodes. A CLI is used for the C-plane interface, and
a VLAN-based interface is used for the D-plane. Data
plug-ins are implemented in two sets of PCs with CentOS
(Linux). Each PC has a PCIe board with a network
processor, Cavium Octeon [Cav 10]. This board is called
WANic-56512 (developed by General Electric
Company). An open and high-level language called CSP
(Continuous Stream Programming) and its development
environment, “+Net,” for Octeon [Kan 13b] is used for
developing the plug-in programs. Control plug-ins are
implemented in the PCs.

Two sets of plug-ins were developed. The first set of
plug-ins, a control plug-in and a data plug-in, implements
a network-accommodation function that connects a slice
to an external network through a VLAN, and the second
set of plug-ins implements VLAN-based virtual links
(link slivers) between VNodes.

B. Re-implementing network-accommodation function
The first set of plug-ins implements a network
accommodation function that connects a slice of the
VNode platform to an external network through a VLAN
(see Figure 5). This function is similar to that of
“network accommodation equipment” (NACE or NC)
[Kan 12b], which is built into the VNode platform.
However, this function is re-implemented to test the plug-
in architecture and the network-accommodation-function
implementation.

The data plug-in converts the packet format; that is, the
packet format for the external network is X/Ethernet,
where X is usually IP but other protocols can also be
used, and the internal format for a VNode is
X/Ethernet/Ethernet. The outer MAC header contains the
platform parameters, and X/Ethernet (including the inner

MAC header) is the packet format for the slice.
As shown in Figure 5, successful IP communication

between a PC in the external network and a VM in the
virtual node was confirmed by a ping command. The
performance of the whole prototype system, which
contains two VNodes and plug-ins, has not yet been
measured. However, the performance of the data plug-in
implemented on the Octeon board was measured. When
packet size was sufficiently large, i.e., 600 bytes or larger,
the throughput was measured to be 8 Gbps or more,
namely, close to the wire rate, i.e., 10 Gbps.

C. Implementing a new type of virtual link
The second set of plug-ins implements a new type of
virtual link. GRE-based virtual links are the only type
available in the current version of VNodes. VLAN-based
virtual links are thus implemented by using the plug-ins.
The architecture for the VLAN-based virtual link is
shown in Figure 6, and the packet formats and example
contents are shown in Figure 7. To separate a
programmer from the network and other programmers,
internal MAC addresses of the programmer, which are
part of the data plug-in interface, must be hidden outside
of the programmer [Kan 12a]. The redirector data plug-in
therefore swaps the MAC addresses in data packets as
shown in Figure 7.

To operate a virtual link correctly, control plug-ins in
two VNodes, which are the end-points of the virtual link,
must exchange control parameters through the inter-
VNode C-plane (see the top of Figure 6). The end-point
addresses in the control parameters identify the slice to
which the virtual link belongs. This negotiation should be
performed by the VNode managers (VNMs) of the
VNodes when a virtual link is created or deleted.
However, currently they only have negotiation function of

Extended
VNode

Extended VNode

Slice
Slice
Slice

PC

VNode platform External network

pingVLAN

Control plug-in

Data plug-inSlow
path VM
IP/Ethernet IP/Ethernet

IP/Ethernet
/Ethernet

Figure 5. Re-implementation of network-

accommodation function

Controller

Redirector
manager

Switch
(Redirector

part)

OVPI for
Control
Plug-ins

(CLI)

OVPI for
Data

Plug-ins
(VLAN)

Controller

Redirector
manager

Switch
(Redirector

part)

OVPI for
Control
Plug-in
(CLI)

OVPI for
Data

Plug-ins
(VLAN)

Control
plug-in

Data plug-in
Network
processor
(Octeon)

board

Control
plug-in

Data plug-in
Network
processor
(Octeon)

board

VNM VNM

Inter-VNode C-plane

Inter-VNode
Networks

VNode VNode
Extended VNode Extended VNodeLinux PC Linux PC

←→ Exchanging virtual link parameters

New type of
virtual links
(link slivers)

C-plane
D-plane

Figure 6. VNode plug-in and interaction architecture for extension of a virtual

link

MAC
0004b0010004

Extended VNodeExtended VNode MAC
0003b0000010
0003b0000042

MAC
0003b0000004

Program-
mer

Data
plug-in

Program-
mer

Data
plug-in MAC

0004b0000021
0004b0000032

Swap

0003b0000010 0003b0010004 x88b5 …

0003b0010004 0003b0000010 x88b5 … 0004b0000021 0004b0010004 x6558 …

0004b0010004 0004b0000021 x6558 …

Swap

DMAC SMAC DMAC SMAC

DMAC SMAC DMAC SMAC

MAC header

MAC header

0003b0000042 0003b0010004 x88b5 … 0004b0010004 0004b0000032 x6558 …

0003b0010004 0003b0000042 x88b5 … 0004b0000032 0004b0010004 x6558 …

Ethernet type x88b5 = IEEE 802.1 Local Experimental Ethertype 1, x6558 = Transparent Ethernet Bridge
Figure 7. Packet formats for the VLAN-based virtual link

6

GRE-based virtual links. Therefore, in this preliminary
and temporary implementation, the GRE-based link
parameters, i.e., IP addresses (and a GRE key), are passed
to the control plug-ins and they are converted to the
VLAN-based link parameters, i.e., MAC addresses (and a
VLAN ID). In a future version of redirector plug-in
architecture, VNMs should implement a tunneling
mechanism, i.e., CIT. The VNMs can exchange VLAN-
based link parameters or any other type of control
information that control plug-ins manage using CIT.

Successful IP communication between the virtual
nodes connected by the VLAN virtual-link was confirmed
by a ping command; although virtual links in VNodes
can transmit arbitrary format packets such as IPEC
packets [Kan 12c], IP was used because it requires only
two commands (i.e., ifconfig and ping) built into the
virtual node. The performance of the whole prototype
system was not measured, but the throughput of the data
plug-in was measured to be 9 Gbps or more when the
packet size was 900 bytes or larger.

VI. RELATED WORK

Click [Koh 00] is a software architecture that uses two-
level description for describing routers modularly. The
lower-level components, which are described in C, can be
regarded as plug-ins. The higher level is described in a
domain-specific language, which connects modules in
several ways. Both data and control plug-ins may be
described by using Click; however, Click is suited to
(data) packet processing but not well suited to control
processing and hardware plug-ins.

OpenFlow [McK 08] enables easy implementation and
extension of network control. It is easy to use OpenFlow
to design a plug-in architecture for management and
control. It cannot, however, be used to implement data
plug-ins.

Active networks enabled ad hoc extension of data
paths. Capsules, or active packets [Wet 98], which are
packets containing programs, may be regarded as a
temporary plug-ins. There are, however, two issues
concerning capsules. First, capsules are not suited to
repeatedly used functions because of redundancy; that is,
multiple packets contain the same program. Second, they
cannot be used for hardware plug-ins. Other types of
active networks, such as SwitchWare [Ale 98], solve the
first issue but not the second one.

In contrast to OpenFlow and active networks described
above, the plug-in architecture proposed in this paper can
be used for both control and data plug-ins, and for both
software and hardware plug-ins.

VII. CONCLUSION

A method for evolving programmer and redirector, i.e.,
computational and networking components of a VNode,
independently was proposed and tested. This method is
composed of two steps. In the first step, plug-in interfaces
called “open VNode plug-in interfaces” (OVPIs) for both
data and control plug-ins are used. These OVPIs are built
in both the programmer and the redirector of VNodes.

A prototype of OVPIs and plug-ins were developed
and evaluated. The evolved VNode can implement new

types of network accommodation functions and can create
new types of virtual links. The throughput of the network
accommodation and the VLAN-based virtual links is
close to a wire rate of 10 Gbps. This result means that the
first step of VNode evolution was succeeded for these
new functions.

Future work includes implementing CIT to the VNM
and implementing new types of virtual links and network
accommodation methods, including non-IP-protocol
based ones, using advanced technologies and methods. It
also includes applying this method, including the second
step, to VNodes in JGN-X.

ACKNOWLEDGMENTS

Part of the research results is an outcome of “Advanced
Network Virtualization Platform Project A” funded by the
National Institute of Information and Communications
Technology (NICT). The author thanks Kazuhisa Yamada
from NTT, Akihiro Nakao from the University of Tokyo,
Toshiaki Tarui from Hitachi, and other members of the
above project for their valuable discussions on the VNode
evolution process. The author also thanks Yasushi
Kasugai, Kei Shiraishi, Takanori Ariyoshi, and Takeshi
Ishikura from Hitachi for implementing the plug-in
interfaces in the redirector.

REFERENCES
[AKA 10] AKARI Architecture Design Project, “New

Generation Network Architecture ― AKARI Conceptual
Design (ver 2.0)”, May 2010.

[Ale 98] Alexander, D. S., Arbaugh, W. A., Hicks, M. W.,
Kakkar, P., Keromytis, A. D., Moore, J. T., Gunter, C. A.,
Nettles, S. M., and Smith, J. M., “The SwitchWare Active
Network Architecture”, IEEE Network, Vol. 12, No. 3, pp.
29–36.

[Aoy 09] Aoyama, T., “A New Generation Network: Beyond
the Internet and NGN”, IEEE Communication Magazine,
Vol. 47, Vol. 5, pp. 82–87, May 2009.

[Bav 06] Bavier, A., Feamster, N., Huang, M., Peterson, L.,
and Rexford, J., “In VINI Veritas: Realistic and Controlled
Network Experimentation”, SIGCOMM 2006, pp. 3–14,
September 2006.

[Cav 10] “OCTEON Programmer’s Guide, The
Fundamentals”, Cavium Networks, 2010,
http://university.caviumnetworks.com/downloads/-
Mini_version_of_Prog_Guide_EDU_July_2010.pdf

[Due 12] Duerig, J., Ricci, R., Stoller, L., Strum, M., Wong,
G., Carpenter, C., Fei, Z., Griffioen, J., Nasir, H., Reed, J.,
and Wu, X., “Getting Started with GENI: A User Tutorial”,
ACM SIGCOMM Computer Communication Review, Vol. 42,
No. 1., pp. 72–77, January 2012.

[Far 00] Farinacci, D., Li, T., Hanks, S., Meyer, D., and
Traina, P., “Generic Routing Encapsulation (GRE)”, RFC
2784, IETF, March 2000.

[Fel 07] Feldmann, A., “Internet Clean-Slate Design: What
and Why?”, ACM SIGCOMM Computer Communication
Review, Vol. 37, No. 3, pp. 59–74, July 2007.

[Kan 12a] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-
Virtualization Nodes that Support Mutually Independent
Development and Evolution of Components”, IEEE
International Conference on Communication Systems (ICCS
2012), November 2012.

[Kan 12b] Kanada, Y., Shiraishi, K., and Nakao, A., “High-
performance Network Accommodation into Slices and In-
slice Switching Using A Type of Virtualization Node”, 2nd

7

International Conference on Advanced Communications and
Computation (Infocomp 2012), IARIA, October 2012.

[Kan 12c] Kanada, Y. and Nakao, A., “Development of A
Scalable Non-IP/Non-Ethernet Protocol With Learning-based
Forwarding Method”, World Telecommunication Congress
2012 (WTC 2012), March 2012.

[Kan 13a] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-
resource Isolation for Virtualization Nodes”, IEICE Trans.
Commun., Vol. E96-B, No. 1, pp. 20-30, 2013.

[Kan 13b] Kanada, Y., “Open, High-level, and Portable
Programming Environment for Network Processors”, IEICE
7th Meeting of Network Virtualization SIG, July 2013 (in
Japanese).

[Koh 00] Kohler, E., Morris, R., Chen, B., Jannotti, J., and
Frans Kaashoek, M., “The Click Modular Router”, ACM
Transactions on Computer Systems (TOCS), Vol. 18, No. 3,
pp. 263–297, 2000.

[Kou 01] Kounavis, M., Campbell, A., Chou, S., Modoux, F.,
Vicente, J., and Zhuang, H., “The Genesis Kernel: A
Programming System for Spawning Network Architectures”,
IEEE J. on Selected Areas in Commun., vol. 19, no. 3, pp.
511–526, 2001.

[McK 08] McKeown, N., Anderson, T., Balakrishnan, H.,
Parulkar, G., Peterson, L., Rexford, J., Shenker, S., and
Turner, J., “OpenFlow: Enabling Innovation in Campus
Networks”, ACM SIGCOMM Computer Communication
Review, pp. 69–74, Vol. 38, No. 2, April 2008.

[Mit 03] Mitra, N., and Lafon, Y., “SOAP version 1.2 part 0:
Primer”, W3C Recommendation 24 (2003): 12.

[Nak 10] Nakao, A., “Virtual Node Project ― Virtualization
Technology for Building New-Generation Networks”, NICT
News, No. 393, pp. 1–6, Jun 2010.

[Nak 12] Nakao, A., “VNode: A Deeply Programmable
Network Testbed Through Network Virtualization”, 3rd
IEICE Technical Committee on Network Virtualization,
March 2012, http://www.ieice.org/~nv/05-nv20120302-
nakao.pdf

[Tur 07] Turner, J., Crowley, P., Dehart, J., Freestone, A.,
Heller, B., Kuhms, F., Kumar, S., Lockwood, J., Lu,
J.,Wilson, M., Wiseman, C., and Zar, D., “Supercharging
PlanetLab ― High Performance, Multi-Application, Overlay
Network Platform”, ACM SIGCOMM Computer
Communication Review, Vol. 37, No. 4, pp. 85–96, October
2007.

[Wet 98] Wetherall, D., et al. “ANTS: A Toolkit for Building
and Dynamically Deploying Network Protocols”, 1st IEEE
Conference on Open Architectures and Network
Programming (OPENARCH’98), pp. 117–129, April 1998.

[XML] XML-RPC Home Page, http://www.xmlrpc.com/

