A Node Plug-in Architecture for Evolving Network Virtualization Nodes

Yasusi Kanada Hitachi, Ltd.

SDN4FNS 2013 2013-11-12

Yasusi Kanada, Hitachi, CRL

Outline

What is VNode?

VNode is a physical node with network virtualization function.

Evolution of VNode

VNode allows independent evolution of components of VNode.

Proposal

An architecture and a method for evolving the components in two steps using plug-ins are proposed.

Prototyping and evaluation

What is VNode?

We are developing VNode and VNode Platform in a collaborative project directed by Prof. Aki Nakao.

► VNode Platform is a network-virtualization platform.

- On this platform, multiple developers can create and use slices (virtual networks) concurrently and independently.
- VNode is physical node with network-virtualization functions.

Components of VNode

VNode consists of three components:

- Programmer: a deeply-programmable computational component (software & hardware).
 - Deeply-programmable: Data-plane is programmable.
- Redirector: a networking component (software & hardware).
- VNode manager: a control component.

Yasusi Kanada, Hitachi, CRL

Evolution of VNode

- Programmer and redirector may evolve by using new node hardware or software, or new functions.
 - New hardware/software: New network processors, GPGPUs, New types of VMs, etc.
 - **New functions**: A new protocol stack, etc.
- Programmer and redirector can evolve independently because they are *modular*.
 - The interfaces can be clearly defined and work efficiently.
- However, no method for this evolution has been available.

Proposed Method: Two-step Evolution of VNode

- Step 1: To develop new subcomponents as plug-ins and to connect them to the original components.
 - The subcomponents (software & hardware) can be dynamically evolving without interference to existing slices.

► Step 2: To merge the plug-ins into the components.

■ The merged components are static and stable.

Plug-in Architecture for Step 1

Data plug-in and Control plug-in

- A new data-plane function is implemented by a data plug-in.
- A data plug-in requires new control functions, which are implemented by a control plug-in.
- Plug-ins may be placed at logically and physically distant location from VNode.
 - VNode: in a public testbed, Plug-ins: in a private network.

Plug-in Interfaces for Step 1

Open VNode plug-in interfaces (OVPIs) are defined.
Two types of OVPIs: C-plane and D-plane interfaces.

Design of OVPI for Control Plug-ins

Components of Control OVPI

Plug-in host name or address

- It specifies the host that contains the plug-in.
- It is usually a domain name or an IP address.

Plug-in identifier

• It specifies a plug-in in the host.

Parameters

• They specify control information including a slice identifiers.

► Examples

 CLI of the plug-in host: add_link vlan=id esmac=p1 edmac=p2 ismac=p3.

XML-RPC (connected to the host): <methodCall><methodName>create-slivers</methodName> <params> <param> <linkSliver type="link" name="virtual-link-1"> <param> <linkSliver type="link" name="virtual-link-1"> <vports> <vports> <vport name="vport0"> <params><param key="controller" value="plug-in-0-addr" /> <params><param key="port" value="data-plug-in-0-port"/></params></vport> <vport name="vport1">... </vport></vports> <params><param key="ExtensionName" value="vlan_link" /></params></linkSliver>...

SDN4FNS 2013 2013-11-12 Yasusi Kanada, Hitachi, CRL

Design of OVPI for Data Plug-ins

Components of Data OVPI

Plug-in channel tag

- A host and a plug-in are not specified separately.
- A tag (such as a VLAN identifier) can specify a collection of plug-ins.

Parameters

- They are protocol parameters such as addresses.
- Some of them can be used for identifying the slice.

► Examples

- A VLAN can be used for the data-plane protocol.
 - Plug-in channel tag: A VLAN identifier.
 - Parameters: Source and destination MAC addresses.
- GRE/IP can be used for the data-plane protocol.
 - Plug-in tag: A key in the GRE header
 - Parameters: Addresses in the IP header.

Prototyping & Evaluation: Architecture

Data plug-in and OVPI

- VLAN is used for data OVPI.
- Data plug-in is a network processor (NP) board with Cavium Octeon with a program (software & hardware).

Control plug-in and OVPI

- CLI is used for control OVPI.
- Control plug-in is a Linux PC with a C program.

Prototyping & Evaluation: Two Sets of Plug-ins

► 1: Network accommodation

It connects a slice to an external network through a VLAN.

■ This is a re-implementation of a function supported by the platform.

► 2: New type of virtual link

- VNode platform only have a type of GRE-based virtual links.
- A type of VLAN-based virtual links is implemented by using plug-ins.

(to be continued ...)

Prototype & Evaluation: VLAN-based Virtual Link

Prototype development

- Two evolving VNodes with plug-ins were developed.
- A new type of virtual links was implemented on the VNodes.
 - Controllers in VNodes "tunnels" control information of data plug-ins.

Evaluation

- A slice with two virtual nodes and a VLAN-based virtual link between the nodes is created.
- The virtual link worked correctly and the throughput was 9 Gbps.

Summary and Future Work

- A method for evolving VNodes by two steps was proposed.
 - **Step 1**: Data & control plug-ins, connected to a VNode by OVPIs, are used.
 - **Step 2**: Plug-ins are merged into VNode.
- Programmer and redirector can be independently evolved using this method.
 - Only redirector plug-ins has been tested.
- Prototypes of OVPIs and plug-ins were developed and evaluated.
 - The evolving redirector can support new types of network accommodation functions and new types of virtual links.
 - The throughput is close to a wire rate of 10 Gbps.

Future work

- To implement programmer plug-ins.
- To implement more new types of virtual links (redirector plug-ins).
- To apply this method to VNodes in Japan-wide testbed, JGN-X.