
 

 

Abstract – A previously developed plug-in architecture for net-
work-virtualization nodes allows network operators to introduce 
new types of virtual nodes and links and slice developers to use 
them in slices (i.e., virtual networks). In this paper, a method for 
extending network-virtualization infrastructures by introducing 
plug-ins to nodes in the infrastructure and a freely-designed plug-
in-specific packet header, which enable sharing part of packet 
contents among the same type of plug-ins distributed in the 
infrastructure, is proposed. The header is inserted into every data 
packet handled by the nodes, but it is hidden from slices in a 
“clean virtualization” infrastructure. This method was applied to 
creation of a new type of virtual links with network-delay 
measurement function using a hidden timestamp in each packet. 
The timestamps do not affect slices; that is, conventional 
programs can be used in the slice for the measurement without 
modification. The method was evaluated by edge-to-edge delay 
measurements and the evaluation results show that it is suitable 
for developing new functions, including functions requiring wire-
rate performance, in shared/public networks. 
 
Keywords – Network-node evolution, Network-node plug-in 
architecture, Network-delay measurement, Timestamp, Network 
virtualization, Virtualization node, VNode, Virtual-link-type 
creation, Deep programmability.  

I. INTRODUCTION 

Development of new communication services will help global 
human society to evolve. To enable simple, flexible, and cost-
reduced service creation, network virtualization will play an 
important role by introducing two concepts, i.e., “slice” and 
“slice developer.” As for the first one, network virtualization 
enables creation of various types of virtual networks, which 
are called slices, on a single physical network. Slices not only 
reduce development and maintenance costs of customized 
networks but also realize simpler and flexibly customizable 
networks. As for the second concept, network virtualization 
creates a new role, called slice developer [Yam 12], in addition 
to the two conventional roles of a network: operator and user. 
Slice developers develop slices and operate the slices for end 
users. In this three-role model, an operator may be called an 
infrastructure provider, and a slice developer may be called a 
service provider [Cho 09]. Slice developers create a slice by 
selecting types of virtual nodes and links that are supported by 
the network-virtualization infrastructure, and they can program 
virtual nodes (and virtual links) if they are programmable.  

However, slice developers cannot introduce new types of 
virtual nodes or links as well as new hardware and software 
into the network infrastructure by themselves, so a method for 
evolving a node was developed [Kan 13c]. Although the infra-
structure may sufficiently support various types of nodes and 
links at the time of platform development, new types of 
hardware and software, which can be used for building new 
types of virtual nodes or links, will become available through 
technical innovations. A method that allows the operator (or 
the vendor) to introduce new types of virtual nodes and links 
by evolving the infrastructure was therefore developed 
[Kan 13c][Kan 14]. For this method, first, new types of virtual 

nodes and links are introduced by developing data and control 
plug-ins. The control plug-ins are then integrated into original 
control and management components [Kan 14]. The plug-in 
architecture developed in these previous studies was 
implemented in the virtualization node (VNode) and VNode 
infrastructure [Nak 12][Kan 12], which were developed by the 
Virtualization Node Project (VNode Project) [Nak 10]. 

In the present study, a method for introducing node plug-ins 
and a freely-designed plug-in-specific packet header is 
proposed because this type of packet header greatly extends 
the potential of infrastructure evolution. A data plug-in may be 
used for processing predefined packet contents, but it may also 
be used for processing content of a newly introduced header. 
Such a header, which is inserted into every data packet han-
dled by the plug-ins, can be hidden from slices if the virtual-
ization infrastructure is “cleanly virtualized” [Kan 12]. In 
addition, the header is not referenced by the original infrastruc-
ture. The format of the header can therefore be freely designed 
according to the requirements for the data plug-in. The data 
plug-ins can be distributed to nodes in the virtualization infra-
structure and can share the content of the header; that is, some 
plug-ins write content and others read and update it. This 
method is applied to measurements of network edge-to-edge 
delay by using a hidden timestamp in each packet. The 
timestamps do not affect slices; that is, conventional protocol 
processing and application programs can be used on the slice 
for the measurement without modifying them. In addition, they 
do not affect the original infrastructure either. 

The rest of this paper is organized as follows. Section II 
describes related work. Section III reviews a network-
virtualization infrastructure architecture that can be extended 
(evolved) by adding plug-ins. Section IV describes a method 
for handling platform-specific or plug-in-specific information 
(packet headers) in virtual networks. Section V describes a 
method for packet identification in programmable networks. 
Section VI proposes a method for plug-in-specific header 
handling (including timestamp handling) with the packet 
identification method. Section VII evaluates the proposed 
packet-handling method, and Section VIII concludes the paper. 

II. RELATED WORK 

Related work on programmability of network nodes and 
networks and network-delay measurements is summarized in 
this section. 

A. Network-node programmability 
OpenFlow [McK 08] and other software-defined networking 
(SDN) technologies enable separation of control and data, 
control-plane programming, and centralized network control. 
Network infrastructures (including network nodes) can be 
virtualized, and the control plane can be evolved by using 
these technologies. However, conventional SDN does not 
support data-plane programmability and programmability of 
decentralized control. These functions are also required in 
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future networks, so they are supported by the plug-in 
architecture proposed in this paper. They can be used for a 
combination of new control-plane and data-plane functions, 
which are separated but can be flexibly integrated. Moreover, 
the plug-in architecture supports new functions realized by 
combinations of software and hardware. Although new 
software is focused on in regard to future networks, new 
hardware will also be required.  

Although OpenFlow is designed to handle IP/Ethernet 
packets, it can also handle non-standard protocols. However, 
OpenFlow cannot be used for stateful processing of packets 
with a plug-in-specific packet header, which is focused on in 
this paper. 

JUNOS® SDK [Kel 09] of Juniper Networks supports 
service components as plug-ins. Each plug-in consists of 
control and data components. However, in this architecture, 
only one instance of a service component is created. This 
architecture differs from the plug-in architecture proposed in 
this paper, which supports creation of a type of virtual node or 
link by network operators (or vendors) and enables creation of 
multiple instances of components by slice developers. 

B. Delay measurements 
It is important to measure network communication delay 
between end hosts or a server and a client because delay is an 
important measure of QoS. Delay can be measured either 
directly, i.e., by using timestamps in packets, or indirectly, i.e., 
by using network tomography or a similar method. In the case 
of direct methods, probing packets, such as “ping”, i.e., a type 
of packet of ICMP, are used. Although probe packets are 
known to normally behave in a similar way to application 
packets, sometimes they may behave differently [Che 03]. 
Especially, even if the behaviors are similar, the delay 
distributions may be different.  

Several types of application packets may contain 
timestamps. For example, in regard to the real-time transport 
protocol (RTP), every packet can contain a timestamp. The 
timestamp is inserted by the sender application and tested by 
the receiver application; it is thus used only for end-to-end 
measurements. A more generic (but non-virtualized) method 
using timestamps by using OpenFlow is proposed [Adr 14]. 

Direct methods, however, usually use probe packets unless 
a specific application uses a packet format that contains a 
timestamp. Application packets are usually not allowed to 
contain timestamps because both TCP/IP or UDP/IP protocols 
and applications do not handle timestamps and, if timestamps 
are inserted, these protocols and applications cannot process 
packets correctly. In addition, standard headers, such as 
Ethernet MAC headers, IP headers, and GRE headers, can be 
added easily by modifying operating-system (OS) con-
figurations; however, non-standard headers, such as those 
containing timestamps, cannot easily be added by using OS 
functions. A method for using such non-standard headers in a 
network is thus proposed in the following. 

III. EVOLVABLE NETWORK-VIRTUALIZATION 

INFRASTRUCTURE 

Network virtualization and the basic VNode architecture, 
which enable mutually independent development of 
computational and networking components of VNodes 
[Nak 12][Kan 12], and an evolving VNode architecture by 
using plug-ins [Kan 13c][Kan 14] are reviewed.  

A. Network virtualization and VNode 
When many users and systems share a limited amount of 

resources on computers or networks, virtualization technology 
creates the illusion that each user or system owns resources of 
their own. Many programmable virtualization-network 
research projects have been carried out, and many models, 
including PlanetLab [Tur 07], VINI [Bav 06], GENI [Ber 14], 
and Genesis [Kou 01], have been proposed. Slices are created 
by network virtualization using a virtualization infrastructure 
(substrate) that operates the slices.  

In the VNode Project, network-virtualization technology 
was developed by Nakao et al. [Nak 10] [Nak 12]. This tech-
nology makes it possible to build programmable virtual-
network environments in which slices are isolated logically, 
securely, and in terms of performance (QoS) [Kan 13a]. In 
these environments, new-generation network protocols can be 
developed on a slice without disrupting other slices.  

B. Method for node evolution 
The method for evolving VNodes [Kan 13c][Kan 14] is 
reviewed here. Using this method, operators (or vendors) can 
use plug-ins for developing new functions, such as creating, 
operating, or deleting new types of virtual node or link, for 
slice developers. The operator first develops new subcompo-
nents of the original components of the VNode as plug-ins and 
connects them to the original components. Plug-ins consists of 
hardware and software. The operator then merges the plug-in 
functions into the VNode (original components) to create an 
evolved VNode.  

This node-evolution method makes it possible to update the 
plug-ins (i.e., the VNode can be evolved) at any time without 
affecting the operation of the original VNode. As well as the 
data-plane components in the VNode, the network managers 
and control-plane components of the VNode remain 
unchanged. The latter manage the resources and the configura-
tion of the original virtualization infrastructure; however, they 
do not manage the resources and configurations of plug-ins.  

The resources and configurations of a plug-in with data-
plane functions, which is called a data plug-in, must be 
managed by another plug-in, which is called a control plug-in. 
A data plug-in may contain specialized hardware required for 
assuring high performance, isolation, and QoS of slices. Plug-
ins are connected to a VNode by using a predefined interface 
called an open VNode plug-in interface (OVPI) [Kan 13c], 
which should be built into the VNode (see Figure 1).  

To finalize the VNode evolution, an evolved VNode is cre-
ated (this final stage was called the “second step” in the previ-
ous papers [Kan 13c][Kan 14]); that is, the plug-in functions 
are introduced into the core part of the infrastructure. The data-
plug-in functions of the programmer are merged into the data-
plane components and the functions of control plug-ins are 
introduced into the control-plane components. Slice developers 
can use the new function in a similar way as they use other 
functions. A method for finalizing the evolution at reduced 
cost was proposed in a previous paper [Kan 14]. By using this 
method, a slice developer can use new types of virtual nodes 
and links, which are implemented by plug-ins, using the same 
syntax as built-in types in a slice definition. In addition, the 
plug-ins are registered to the network manager that 
authenticates the plug-ins, and the operator authorizes them. 

The proposed plug-in architecture supports data-plane 
programmability and programmability of decentralized control 
in addition to programmability of centralized control, which is 
also supported by conventional software-defined networking 
(SDN) technologies. The data-plane programmability of a data 
plug-in and the control-plane programmability of a control 
plug-in are combined to implement a new type of virtual node 
or link. The data-plane and control-plane functions are 



 

 

separated, but they can be flexibly integrated; that is, the 
management interface between a control plug-in and a data 
plug-in can be a private interface, which has no predefined 
specification. Moreover, the plug-in architecture supports new 
functions created by combinations of software and hardware.  

IV. HANDLING PLATFORM/PLUG-IN SPECIFIC INFORMATION IN 
VIRTUAL NETWORKS 

In virtualization networks based on an overlay technology, 
packets contain a platform header, which contains platform-
specific information such as a slice and virtual-link identifiers. 
Platform-specific data can be classified into three categories: 
standard-header data, standard addresses, and free-form data.  

The standard-header data are contained in a standard 
tunneling header. When a tunneling method is used for 
virtualization, a tunneling header, such as generic routing 
encapsulation [Far 00] over IP (GRE/IP), can be used. For 
example, in the network virtualization using Generic Routing 
Encapsulation (NVGRE) [Sri 14], a GRE key can be used for 
identifying a virtual network. Instead, if a VLAN is used for 
virtualization, a VLAN header can be used for identifying it.  

The standard addresses are contained in address fields in a 
standard header. In addition to a GRE key or a VLAN ID, 
additional information may be conveyed by the IP addresses in 
an IP header or by the MAC addresses in an Ethernet header. 
In a VNode infrastructure, which features clean virtualization, 
the IP addresses in an IP header are used for identifying virtual 
links in combination with the GRE keys.  

The free-form data may be contained in a header with non-
standard form. The platform header can be in any non-standard 
format and contain more information than can be contained by 
a standard header format such as GRE or VLAN. For example, 
a packet may contain a timestamp of any length or other 
measurement data. A non-standard format can be used in a 
clean virtualization infrastructure because the platform headers 
are hidden from slices if they are cleanly virtualized.  

A free-form header may be divided into multiple fields, and 
if one or more data plug-ins exists, the platform header may 
contain plug-in-specific headers, as shown in Figure 2. The 
plug-in-specific header may be set and tested by a plug-in at 
any location in the virtualization infrastructure. The numbers 
of plug-ins and headers may vary, and the orders of headers 

and processing may vary, but this variation is 
out of scope of this paper. 

As shown in Figure 3, plug-ins in entrance 
gateways insert a platform header that con-
tains a plug-in-specific header (which may 
contain a timestamp), VNodes in the infra-
structure handle the header by the above-
described method, and plug-ins in exit gate-
ways handle (may measure the delays) and 
remove the header. In the figure, two termi-
nals communicate with each other via a slice. 
The physical network consists of two meas-

urement gateways and two VNodes. Each VNode contains a 
virtual node on the slice. The virtual nodes are connected by a 
special type of VLAN-based virtual-link that supports a spe-
cialized function such as delay-measurement. The virtual links 
between VNodes and gateways are of the same type. In this 
infrastructure, each packet has a non-standard platform header.  

Although plug-ins can use any packet-header format in the 
proposed method, it may be better to use a standard format 
such as the network service header [Qui 13] when it is 
available. The network service header, which is being 
standardized in the IETF, can be added to encapsulated packets 
to specify service paths in a network and to carry metadata 
used by network devices or services. However, at least in the 
case of the delay-measurement applications described in this 
paper, service paths are not stored in platform headers. 

To virtualize the network “cleanly”, the timestamp must be 
removed (or hidden) just before the packet is received by a 
virtual-node program on a slice, and it must be added again 
just after the packet is sent by the program because the 
timestamp may not affect in-slice processing. A method for 
cooperatively handling plug-in-specific information in plug-
ins, especially delay measurement, is described in Section VI, 
and needs concerning packet identification and a packet-
identification method, which is required for header handling in 
programmable networks, are described in the next section. 

V. PACKET IDENTIFICATION IN PROGRAMMABLE NETWORKS 
To identify input and output packets, either the program or the 
developer of the program (i.e., the slice developer) must 
specify the method of identifying them. If a virtual node works 
only as a router or a switch, which do not absorb, generate, or 
duplicate packets, input packets to the node and the output 
packets from the node may be easily identified by the 
virtualization infrastructure.  

These packets, however, cannot be identified if the virtual 
node is programmable because the infrastructure does not 
know the correspondence between input and output packets 
(see Figure 4). A programmable node can absorb input 
packets (Figure 4(a)) and generate new packets that do not 
correspond to input packets (Figure 4(b)). It can also generate 
multiple copies of a packet (Figure 4(c)). In addition, the 
formats of input and output packets may be completely 
different. The identity of input and output packets depends on 
the program on the virtual node, and it cannot be defined 
without certain assumptions concerning the program.  

To identify the input and output packets, either the program 
or the developer of the program must therefore specify the 
identity. For example, they can specify a field p. f of packet p, 
which contains a value that can identify the packet, or they can 
specify a function f ( p) that inputs a content of packet p and 
outputs its identifier.  

If packets must be processed quickly by the infrastructure, 
e.g., they must be forwarded at wire rate, the method for 
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packet identification must be simple. The most promising 
method is to include a packet identifier in each packet. 
Although this method may be restrictive in some situations, 
packets can usually be identified by their contents. When this 
method is used, the program in a node or the developer must 
specify the location and the length of the identifier field in the 
packet. For example, if TCP is used, the sequence number can 
be used as the identifier.   

VI. PLUG-IN-SPECIFIC HEADER HANDLING 

The proposed method for processing a plug-in-specific header, 
especially a timestamp in the header, by the plug-ins in the 
Vnodes is described as follows. 

A. Handling a plug-in-specific header in a VNode 
Because a VNode must satisfy the clean virtualization criteria, 
it must hide plug-in headers by using an appropriate method; 
i.e., a method for storing and retrieving plug-in headers must 
be developed. It is required that a VNode must hide its plat-
form header from virtual nodes implemented in the VNode. 
For example, if a plug-in-specific header contains a timestamp 
and the header is hidden from the slice, e.g., they are removed 
by the infrastructure before processing by programs on the 
slice, conventional protocol processors and applications that do 
not handle timestamps work normally on the slice. The VNode 
must, therefore, remove the platform header when it sends a 
packet to the virtual nodes, and it must add a platform header 
when it receives a packet from the virtual nodes. To restore the 
packet header, the VNode must identify the packet. As 
described in the previous section, the most promising method 
for this identification is to use a packet identifier in the packet 
(on the slice). The performance of the plug-in to provide these 
header-handling functions should be high. A network proces-
sor may thus be used for implementing these functions.  

The method for handling a plug-in-specific header differs 
from that for handling the base platform header that contains 
virtual-network and -link information in the following way. If 
the only contents of the packets are virtual-link-related 
information, such as virtual-network or -link identifiers, the 
input and output platform headers are independent. However, 
if they are related, in such a case as delay measurement, the 
packet header must be restored when outputting the packet. 

B. Handling timestamps in the VNode infrastructure 
An application of the proposed method is measurement of 
gateway-to-gateway communication delay. Timestamps can be 
inserted to a plug-in-specific header and handled by 

corresponding plug-ins in all the VNodes and 
gateways. They do not affect the protocols 
and applications used on slices because they 
are hidden from the slice.  

An example of the physical network 
structure used for this measurement is given 
in Figure 3. The timestamp is inserted at the 
entrance gateway. Each VNode generates a 
packet for the virtual node by removing the 
platform header from an incoming packet, 
and the VNode restores the timestamp to one 

or more outgoing packets that comes from the virtual node and 
are identified with a stored incoming packet. The delay of 
these removal and restoration functions must be small, and the 
throughput of these functions should be high. The timestamp is 
tested and deleted at the exit gateway. This gateway calculates 
the delay (the average and distribution) between the entrance 
and exit gateways. Their clocks must be synchronized as 
exactly as possible to measure sub-millisecond-order delay.  

VII. EVALUATION 

The proposed method was evaluated by developing a measura-
ble VLAN virtual link (MVL), which is a new type of virtual 
link with delay-measurement functions. The MVL is added to 
the VNode infrastructure by using a plug-in architecture for 
VNodes [Kan 13c]. MVL-creation requests are handled by the 
management components of VNodes and by the control plug-
in, which is an MVL-specific control program.  

The experimental network used for this evaluation is as 
follows. In the physical network described in Figure 5, the two 
VNodes, which are placed in the same room, and one PC is 
used for the two gateways (and terminals) to avoid any 
problems with clock synchronization. Terminal PCs com-
municate with each other by using Ethernet (but not 
IP/Ethernet) packets, which are switched by the MAC 
addresses on the slice in the virtual nodes. An Ethernet switch 
program, which is a slow-path program running on Linux 
(CentOS), works on a virtual node in each VNode.  

The computational and networking environments for the 
data plug-ins in the VNodes and the gateways are described as 
follows. A network-processor board called WANic-56512 
(developed by General Electric) was used for each VNode. 
This board contains twelve 750-MHz Cavium Octeon® Plus 
cores, which contains the program, and handles both incoming 
and outgoing packets. The data plug-in for VNodes was 
programmed by a hardware-independent language for network 
processing, which is called “Phonepl” (portable high-level 
open network-processing language) [Kan 13b]. This program 
is handled by a +Net development environment [Kan 13b] that 
consists of a Linux (CentOS), a Phonepl compiler, run-time 
routines, and a GNU C compiler for Octeon. The “data plug-
in” for gateways was programmed in C and compiled by a 
GNU C compiler for Linux (CentOS).  

Although the platform header can be modularized as shown 
in Figure 2, the base header and the timestamp are handled by 
a single program in this implementation. The size of the 
platform header and the displacement and size of the 
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timestamp are embedded in the plug-in. 
The Phonepl program also swaps the VNode-external and 

VNode-internal MAC addresses in the platform header. The 
reason that swapping MAC addresses is required is explained 
in a previous paper [Kan 12], but it is out of scope of this 
paper. To swap addresses, the program contains a conversion 
table for internal and external MAC addresses and accepts 
virtual-link-creation and deletion requests. A creation request 
adds an entry to the conversion table. The entry contains a pair 
of internal and external MAC addresses.  

The gateway-to-gateway delay, the throughput of timestamp 
handling and conversion, and the program lengths were meas-
ured. The evaluation results of the delay is 178 μS (σ = 24 μS). 
If entrance and exit gateways are separated, it is hard to meas-
ure delay of this order. Table 1 shows the other results. It 
compares the performances of the Phonepl program for Octeon 
and the C program for 3-GHz Xeon. Although the overhead of 
storing and searching for the packet header is not light, the 
former performance of the Phonepl program is very close to 
10-Gbps wire rate. Although the C program is relatively short 
because the conversion-table configuration code is omitted, the 
Phonepl program, which contains it, is still much longer.  

VIII. CONCLUSION 

A method for extending a virtualization network infrastructure 
by introducing node plug-ins and a freely-designed plug-in-
specific packet header, which enable sharing part of packet 
contents among the same type of VNode plug-ins spread 
around the infrastructure, is proposed. This method was 
applied to measurements of network edge-to-edge delay by 
using a hidden timestamp in each packet. The timestamps for 
multiple do not affect slices because the VNode infrastructure 
is “cleanly” virtualized; that is, conventional programs can be 
used in the slice for the measurements without modifying 
them. This method was evaluated on the basis of the delay 
measurements, and the evaluation results show that the 
throughput of timestamp handling and conversion is 10-Gbps 
wire rate and that the latency caused by the measurement is 
less than 100 μS. This method is suitable for developing new 
functions, including functions requiring wire-rate performance, 
in shared/public networks. Future work includes 
implementation of other node/link functions and handling 
multiple plug-in-specific headers. 
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Table 1. Evaluation results on timestamp (TS) handling and 
header conversion 

Implementation 
Throughput (Gbps)* Program 

lines TS insertion TS deletion 
Phonepl program 10.0† 9.5† 99‡

C program (Xeon)** 2.3† (4.0††) 2.2† (4.0††) 190‡

*Packet size: 1024 B.  ** Promiscuous mode is used.  †No packet loss (< 10-6)  
†† Packet loss ratio = 10-3  ‡Comment-only lines are not counted. 


