
Dynamically Extensible
Policy Server and Agent

Yasusi Kanada
Hitachi Ltd., Systems Development Laboratory

2Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

Background

� The function of network node will be dynamically
extensible.
� Software can be added/replaced by, e.g.,

❚ Active packets
❚ Java code injection

� Hardware can be added/replaced by, e.g.,
❚ Board addition/replacement

� Both software and hardware functions can be
added/replaced on-the-fly (while the node is running).

� Thus, policies should be dynamically extensible.
� New classes of policies should be able to be added

dynamically
❚ if the network is controlled/managed by policies, and
❚ if the network function may be added dynamically.

3Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

Problem

� Conventional policy-based systems do not allow
dynamic extension.
� E.g., in COPS-PR, policies are stored in statically-

specified PIBs.
❚ New classes of policies require new PIB specification.
❚ If starndard-based, vendors must wait for PIB standardization.
❚ No dynamic extension, even if non-standard PIB is used.

4Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

Solution

� The policy-extension-by-policy (PXP) method has been
developed.
� A new policy class is defined by predefined PD/PE

policies in the PXP method.
❚ A PD (policy definition) policy contains device-independent

definitions of user-defined policy classes, and
❚ A PE (policy embedding) policy contains device-dependent

methods for translation of user-defined policies into device
configurations.

❚ PD/PE policies are meta policies.

5Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

An Architecture for the PXP Method

� Software components
� User/Application interface
� Policy manager

(Policy server, PDP)
� Policy database
� Policy agents

� Policy agents may be
embedded in network
nodes.

User/Application
interface

Policy
manager

Policy
agent

Policy
DB

Network
node

Policy
agent

Network
node

Network
node

Network
node

… …

configu-
rations

configu-
rations

policies

policies

policies

6Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

Policy Deployment Process of the PXP Method

User/Application
interface

Policy
manager

Policy
agent

Policy
DB

Network
node

Policy
agent

Network
node

Network
node

Network
node

… …

Administrator

PD policy

PE policies

Then, policy manager can handle
new classes of user-defined policies.

PE1 PE2

Then, policy agent can translate
new classes of user-defined
policies.

deploy

7Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

Basic Policy Information-model
� A policy is a sequence of policy rules: P = {r1, r2, …, rn}.
� A policy rule consists of

� A list of conditions: c1, c2, …, cm
� A list of actions: a1, a2, …, al

� A condition / an action consists of a variable and a value:
variable = value.

� A policy (instance) belongs to a policy class.
� Class examples: Diffserv-edge, Access-control.
� All the rules in a policy must have the same type of

functionality.
� Example (a Diffserv-edge policy rule)

� if (source_address = 192.168.1.1, protocol = 'tcp')
 { DSCP = 46; }

8Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

Prototype Development

� Three policy classes were
predefined.
� PolicyToTelnet (an amalgame

of PD & PE policies)
❚ Most important

� PolicyVariableDefinition
(a PD policy)

� PolicyValueTranslation (an
amalgame of PD & PE policies)

� A PolicyToTelnet policy rule defines
� a user-defined policy class, and
� the method of translating a policy of this class into CLI

commands.

9Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

PE Policy

� Two essential elements of PE policy rules are
� Command template
� Template fillers

� A command is generated from the pattern by filling the
unfinished portions by using template fillers.

� Example
� Command template: access-list %s permit %s %s %s.
� Fillers: N + 1,

protocol || 'ip',
source_address || 'any',
destination_address || 'any'

� Command generation
❚ Variable values: N = 2, protocol = 'tcp',
source_address = '192.168.1.1', and
destination_adress = ''

❚ access-list 3 permit tcp 192.168.1.1 any

similar to printf in C

10Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

PolicyToTelnet Policy and Policy Deployment
Condition part:
if (name = policy_class_name) {

Action part 1/3: Policy variable declarations
condition_variables =

{variable_name options, …},
action_variables =

{variable_name options, …},
Action part 2/3: Policy prologue/epilogue translators

policy_initialization =
{work_variable = initial_value, …},

policy_pre_deploy_commands =
[[template, filler, filler, …], …],

policy_post_deploy_commands =
[[template, filler, filler, …], …],

policy_pre_undeploy_commands =
[[template, filler, filler, …], …],

policy_post_undeploy_commands =
[[template, filler, filler, …], …],

Action part 3/3: Policy rule translators
rule_initialization =

{work_variable = policy_bytecode_program, …},
rule_deploy_commands =

[[template, filler, filler, …], …],
rule_undeploy_commands =

[[template, filler, filler, …], …] }

G
en

er
at

io
n

or
de

r

Prologue

Epilogue

Commands

Commands
…

Commands

Policy initialization

Rule initialization

Rule initialization

Rule initialization

11Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

PolicyToTelnet Policy and Policy Undeployment

G
en

er
at

io
n

or
de

r

Prologue

Epilogue

Commands

Commands
…

Commands

Policy initialization

Rule initialization

Rule initialization

Rule initialization

Condition part:
if (name = policy_class_name) {

Action part 1/3: Policy variable declarations
condition_variables =

{variable_name options, …},
action_variables =

{variable_name options, …},
Action part 2/3: Policy prologue/epilogue translators

policy_initialization =
{work_variable = initial_value, …},

policy_pre_deploy_commands =
[[template, filler, filler, …], …],

policy_post_deploy_commands =
[[template, filler, filler, …], …],

policy_pre_undeploy_commands =
[[template, filler, filler, …], …],

policy_post_undeploy_commands =
[[template, filler, filler, …], …],

Action part 3/3: Policy rule translators
rule_initialization =

{work_variable = policy_bytecode_program, …},
rule_deploy_commands =

[[template, filler, filler, …], …],
rule_undeploy_commands =

[[template, filler, filler, …], …] }

12Policy 2002 2002-6-5 Yasusi Kanada (C) Hitachi Ltd.

Conclusion

� By using the PXP method,
� Policies with new functionality can be added/replaced

by using preexisting interfaces such as CLI, MIBs, PIBs,
APIs, hardware tables.

� Policy classes can be defined by users or applications
much easier.

