
Taxonomy and Description
of Policy Combination Methods

Yasusi Kanada
Hitachi Ltd., IP Network Research Center

2Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

What is a policy combination?

� Policies may be mutually dependent.
� Negative dependence is called conflicts, and widely studied.
� Polisitive depencence (e.g., cooperation) also exists.

� A policy combination is
� An explicit specification of positive relationship between policies.

❚ Definition in the paper: Combination of mutually dependent policies for
a specific purpose.

� An example in Diffserv (Differentiated Services)
� Edge routers mark a DSCP on packets, and the behavior (PHB) of

core routers depend on the DSCP. (DSCP = Diffserv Codepoint)
� Marking and queuing/scheduling may be controlled by policies.
� A marking policy and a queuing /

scheduling policy cooperate.
� These policies are connected

by DSCP.

Edge Core

Marking policy Queuing/scheduling policy

3Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Two architectures for combining policies

� Policies are rule-based programs in both architectures.
� They are programs because they control the network/node

behavior.

� Label-connection architecture
� A direct extension of policies are used.
� They consists of if-then (condition-action) rules.

� Pipe-connection architecture
� Resolution-based semantics is used (similar to “parallel logic

languages”, such as Parlog, Concurrent Prolog, or GHC).

� Label-connection architecture is currently more
practical [Kanada 99]
� Several advantages.
� The only implementable architecture by using currently available

technology.

� This talk focuses on label-connection architecture.

4Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Passing information between policies
� Tags

� Pieces of information transferred between two policies.

� Tags are classified into Real tags and virtual tags.
� Real tags

❚ Tags that exist inside a packet.
❚ E.g., DSCP

� Virtual tags
❚ Tags that exist outside a packet.
❚ E.g., GMPLS label may be outside a packet.

� Tas are classified into Labels and attributes.
� Labels

❚ Tags that are used for selecting a rule from a policy.
❚ E.g., A DSCP may be used as a label.

� Attributes
❚ Tags that are not used for program control.
❚ Used only for specifying actions.
❚ E.g., queue priority

64
 Packet

1000

 Packet

5Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Types of policy combination — Local relationship

� Four types
� Concatenation (sequential application)
� Parallel application
� Selection
� Repetition

� These types are similar to types of control structures
in procedural programs.

� Why similar?
� Data dependences caused by tags are similar to those caused by

variables in procedural programs.

6Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Concatenation

� Two policies are sequentially applied:

� An example in Diffserv
� Classification and marking policy C

❚ if (Source_IP is x.x.x.x) {
DSCP = “EF”; }

❚ else if (Source_IP is y.y.y.y) {
DSCP = 0; /* DF */ }

� Queuing policy Q
❚ if (DSCP is “EF”) {

Scheduling_Priority = 6;
Enqueue; }

❚ else {
Scheduling_Priority = 1;
Enqueue; }

� The DSCP is used as a real label.

C Q

Edge router
Network

seq(A, B)A B

7Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Parallel application

� Two policies are applied in parallel:
� An example in Diffserv

� Classification policy C
❚ if (Source_IP is x.x.x.x) {

VFL = “Policed-EF”; } # Virtual (flow) label is defined.
else {

VFL = “”; }
� Marking policy M

❚ if (VFL is “Policed-EF”) { # Virtual label is ued.
DSCP = “EF”; }

❚ else {
DSCP = “DF”; }

� Queuing policy Q
❚ if (VFL is “Policed-EF”) { # Virtual label is ued.

Scheduling_Priority = 6;
Enqueue; }

❚ else {
Scheduling_Priority = 1;
Enqueue; }

par(A, B)

A

B

M

Q
C VFL =

“Policed-EF”

8Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Selection

� A relationship between three or more policies:
� Policy A outputs two types of results.
� Policy B handles one of them.
� Policy C handles the other.

� An example in Diffserv
� Policing policy P

❚ if (DSCP is “EF” && Information_Rate <= 2 Mbps) {
VFL = “Policed-EF”; }

❚ else if (DSCP is “EF”) {
VFL = “Drop”; }

❚ else {
VFL = “Policed-DF”; }

� Dropping policy D
❚ if (VFL is “Drop”) {

Absolute_Drop; }

A
B

C
if (A, B, C)

Marking
Policy

D

P

In profile

Out of profile
VFL = “Drop”

VFL =
“Policed-EF”, “Policed-DF”

9Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Repetition

� The policies are repeatedly applied until a condition is
met:

� An example in Diffserv
� Hierarchical shaping policy S

❚ if (VFL is “Policed” &&
DSCP is “EF”) {
Scheduling_Priority = 6;
Maximum_Rate = 700 kbps;
VFL = “Shape2”; Enqueue; }

❚ else if (VFL is “Policed”) { # except EF
Scheduling_Priority = 5;
Maximum _Rate = 500 kbps; # shaping rate
VFL = “Shape2”; Enqueue; }

❚ else if (VFL is “Shape2”) {
Scheduing_Algorithm = Priority_Queuing;
Maximum_Rate = 1 Mbps; # shaping rate

 # 200 kbps (700 k + 500 k – 1 M) or less traffic may be dropped here.
VFL = “Outgoing”; Enqueue; }

while(A) or

Rule S1

 Rule S2

 Rule S3

A Shaping PolicyIteration 1
Iteration 2

Priority = 6

Priority = 5 Priority
queuing

VFL =
“Policed” VFL = “Shape2” VFL =

“Outgoing”

A A B while(A, B)

S

while(S)

10Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Methods of policy organization — Global structure

� Homogeneous organization
� No compound policies are used.
� The policies are organized such that all rules in a policy have the

same type of conditions and the same type of actions.

� Heterogeneous organization
� Other than homogeneous organization.

11Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Homogeneous organization

� Example in Diffserv

(S1’)

(P1’)

Source_addr
is 192.168.1.1

Otherwise

(Q’) Queuing
Policy

Rate <=
2 Mbps

(C’) Classification policy (P’) Policing policy (S’) Scheduling
policy(C1’)

(C2’)

(D) Dropping policy

No policing

(P3’)

VFL =
“Higher_
Class”

Otherwise

VFL =
“Lower_
Class”

(P2’)

(M1) (M2)

(M) Marking Policy

Absolute drop

(D1)

Random drop

(D2)

 No drop

(D0)

Priority
Scheduling

Lower-class
queuing

(Q1’)

(Q2’)

Higher-class
queuing

12Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Heterogeneous organization

� Example in Diffserv

(P’’)

Source_addr
is 192.168.1.1

Otherwise

Mark EF

Higher class
queuing

(M1’)

(Q1’’)

Drop

Rate <=
2 Mbps

(C’) Classification policy

(Pr) Premier service policy

(D1’)

Mark DF

Lower class
queuing

(M2’)

(Q2’’)

(De) Default service policy

Random drop

(S’) Scheduling
policy

(C1’)

(C2’)

(D2’)

Priority
Scheduling

(S1’)

13Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Comparison of the policy-organization types

� Homogeneous organization is more device-oriented.
� Because each policy in this organization may be implemented by a

specific device function.
� Each policy may be mapped to pipelined or SIMD packet procesing

hardware.
� Better suited to device control and performance management

purposes.

� Heterogeneous organization is more service-oriented.
� Because compound policies usually represent abstract functions.
� Better suited to service management.

14Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Discussion on policy-combination types

� Semantics
� Policy semantics can be clarified by explicitly specifying policy

combinations.
� If not specified explicitly, a change of the application order may

cause errorneous results.

� General use
� If policy combination is not specified, policy usage is more

restricted; e.g., the execution order must be predefined.
� The policy system cannot be general-purpose.

� Adaptation to devices
� If policy combination is specified, the policies may be adapted to a

variety of devices.

� Optimization
� Inefficient policies may have to be optimized.
� If policy combination is specified, the possibility of optimizing

policies is improved.

15Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Summary

� Four types of policy combination (local relationship)
are defined:
� Concatenation
� Parallel application
� Selection
� Repetition.

� Advantages of specifying policy combination (global
structure)
� The system becomes semantically clearer.
� The system becomes better suited to general use.
� The range of functionality becomes wider.
� The possibility of policy optimization becomes improved.

� Two types of organization
� Homogeneous organization is more device-oriented.
� Heterogeneous organization is more service-oriented.

16Policy 2001 2001-1-30 Yasusi Kanada (Created: 01-1-24, Updated: 01-1-24) (C) Hitachi Ltd.

Future work

� Implementation — two approaches
� To design a new policy language and systems
� To embed policy combination specification into existing policy

systems

� Development of translation methods
� Policy division: Dividing a policy into two.
� Policy fusion: Merging two or more policies into one.
� Will be discussed in IM 2001.

