
1

Taxonomy and Description of Policy Combination Methods

Yasusi Kanada
IP Network Research Center, Research & Development Group, Hitachi, Ltd.

Totsuka-ku Yoshida-cho 292, Yokohama, 244-0817, Japan
E-mail: kanada@crl.hitachi.co.jp

Abstract. To control complicated and decomposable networking functions, such as Diffserv, two or
more policies must cooperate. Combining two or more mutually dependent policies for a specific pur-
pose is called policy combination. Methods of passing information between combined policies can be
classified into real tags and virtual tags, or labels and attributes. Policy combinations can be classified
into concatenation, parallel application, selection, and repetition. Explicitly specifying policy combina-
tions makes policy systems semantically clearer and better suited to general use, extends the range of
functionality, and improves the possibility of optimization. If policy combinations can be specified in a
policy system, two types of policy organizations can be distinguished: homogeneous and heterogene-
ous. Heterogeneous organization is more service-oriented and seems to meet service-management re-
quirements, but homogeneous organization is more device-oriented and may provide better
performance.

1. Introduction
In policy-controlled networks, networking functions
such as access, QoS, and security function are speci-
fied in a device-independent method and customized
for individual customer or group of customers. Net-
work service is managed based on service-level
agreements (SLA). SLA can be regarded as a policy
specifications or high-level policies. High-level poli-
cies are broken down into low-level policies and
stored into policy servers.

If the functions controlled by policies are simple,
the policies can be independent of each other. In
contrast, to control functions that are complicated and
decomposable, such as Diffserv (Differentiated Serv-
ices) [Ber 99], the relationships between policies must
be taken into account. For example, marking and
queuing policies in Diffserv must work together. If
related policies are deployed to different targets (e.g.,
network devices or device interfaces), the application
order may be naturally constrained. However, if
policies are deployed to the same target, the order is
not explicitly determined or determined in a device-
specific way. This makes the semantics of policies
vague, and makes the policy system less useful. Thus,
the relationships between policies should be clearly
defined, and these relationships should be controllable
for network operators and administrators. For exam-
ple, if marking and queuing policies are deployed to a
network interface in a router, the marking policy must
be applied before the queuing policy. This means that
mechanisms to define the relationships between poli-
cies and to control the relationships in the policy de-
scription language must be supplied.

Kanada [Kan 00b][Kan 00a] previously proposed
two architectures for combining building-block poli-
cies: label-connection architecture and pipe-

connection architecture. Both architectures are based
on declarative programming languages used in artifi-
cial intelligence and knowledge engineering. Thus, in
these architectures, policies are regarded as programs.
This is because they control the behavior of network
nodes or a network. Label-connection architecture is
a direct extension of policies that consists of if-then
(condition-and-action) rules used in commercial pol-
icy servers. Pipe-connection architecture offers sig-
nificant advantages in terms of semantics and
parallelism. However, it is still in an early stage of
research. Label-connection architecture offers its own
advantages and can be implemented by using currently
available technology [Kan 00b]. This paper focuses
on label-connected architecture. Most of the results
discussed in this paper can, however, be applied to
pipe-connected architecture too.

In this paper, the term policy combination refers to
combining two or more mutually dependent policies
for a specific purpose. Our focus is on lower-level
(implementation-level) policies. Means of passing
information between two policy rules are classified in
Section 2. Methods for combining policies are clas-
sified in Section 3. Methods for organizing combined
policies are classified and explained in Section 4 using
Diffserv examples. Problems and possible solutions
associated with these forms of policy combination are
discussed in Section 5.

2. Methods for Passing Information
A policy consists of if-then rules. To make two or
more policy rules that belong to different policies co-
operate, the information must be transferred between
them. A single piece of information transferred be-
tween rules is called a tag. Tags can be real, i.e., in
the packet, or virtual, i.e., outside of the packet (see

2

Fig. 1).1 A tag causes a data dependence [Kuc 81]
between policy rules.

Tags can be categorized into the following two.

1. Labels: A tag may be used for selecting a rule from
a policy. This type of tag is called a label. A label
connects one rule to another (i.e., the label assigned
by one rule specifies the next rule to be applied).
DSCPs (Diffserv code points) [Nic 98] are used as
real labels. Virtual labels, called VFLs (virtual
flow labels), were introduced by Kanada [Kan 99].
Examples of labels are described in Section 3.

2. Attributes: A tag might not only be used in the
action part of the rule, but not in rule selection.
This type of tag is called an attribute [Kan 00b].
Virtual attributes are useful for hierarchical sched-
uling, shaping, and policing. An example of hier-
archical shaping is described in Section 3.4.

64

1000

(a) Real tag (b) Virtual tag

Packet Packet

Fig. 1. Real and virtual tags

3. Types of Policy Combination
Policies change the behavior of a network in a consis-
tent way. Thus, a set of policies that work together
may be regarded as a distributed program. Each pol-
icy consists of if-then rules, so a set of policies is a
rule-based program similar to expert system programs
written in a language such as OPS5 [For 81].

In procedural programs, such as those written in C
or C++, there are four relationships (control struc-
tures) between statements: concatenation (sequential
application), parallel application, selection, and repe-
tition. Despite the fact that a set of policies is a rule-
based program, the application order and the control
dependence [All 83] of policies must be specified.
Thus, the relationships between policies can be clas-
sified into these four types.2

3.1 Concatenation
If two policies are sequentially applied, the relation-
ship between these two policies can be called a con-

1 A virtual tag may be transmitted by additional data lines in
the network device hardware, by a value in a register of the
hardware or a variable in the software, or by the location in
the hardware circuit. So a virtual tag cannot be transmitted
between network devices, but may be transmitted within a
network device.
2 Kanada [Kan 00b] described a policy language in which
the application order can be specified by using an unstruc-
tured method. However, the control should be structured as
described in the present paper.

catenation. A concatenation can be represented by the
following diagram.

For example, in a Diffserv network, a policy for MF
(multi-field) classification and marking, and a policy
for queuing may be concatenated and deployed to an
edge router (see Fig. 2).3 There are two possible
policy rules in the classification and marking policy.
They are as follows.

Rule C1:
if (Source_IP is x.x.x.x) {

DSCP = “EF”;
}

Rule C2:
else if (Source_IP is y.y.y.y) {

DSCP = “DF”; # “DF” == 0
}

In these rules, “EF” refers to expedited forwarding
[Jac 99], and “DF” refers to default forwarding or
best-effort forwarding. Note that the two policies are
ordered by the concatenation, and the two rules in
these policies are connected by DSCP. The concate-
nation specifies a control dependence between the
policies, and the DSCP specifies a data dependence (a
flow dependence [Kuc 81]) between them.

Rules in the queuing policy in the concatenation
may be as follows.

Rule Q1:
if (DSCP is “EF”) {

Scheduling_Priority = 6;
Set an attribute for the scheduler.

Enqueue; # Put the packet into a queue
until the scheduler pulls it off.

}

3 A set of primitive building blocks (policies) for Diffserv
was discussed by Kanada [Kan 00a][Kan 00b].

Classification
and Marking

Policy

Queuing
Policy

Edge router
Network

Fig. 2. Policy concatenation in a Diffserv network

3

Rule Q2:
else {

Scheduling_Priority = 1;
Enqueue;

}

DSCP is used as a real label in Rule Q1. DSCP “EF”
connects Rules C1 and Q1, and DSCP “DF” connects
Rules C2 and Q2.

Rules Q1 and Q2 assume priority scheduling. This
means a priority scheduling rule is connected to the
above rules. The EF traffic receives higher priority,
and the DF traffic receives lower.

3.2 Parallel application
Two policies may be applied in parallel if they do not
conflict. Parallel application can be represented by
the following diagram.

In a Diffserv network, a marking policy and a
queuing policy may be applied in parallel. For exam-
ple, the marking policy in the parallel application may
contain the following rules.

Rule M1:
if (VFL is “Policed-EF”) {

DSCP = “EF”;
}

Rule M2:
else {

DSCP = “DF”;
}

Here, the marking policy is separated from the classi-
fication policy. Rule M1 is applied to higher-priority
packets, and Rule M2 is applied to other (lower prior-
ity) packets. The classification policy does not mark a
DSCP, it just puts a VFL on the packets.

The queuing policy in the parallel application may
contain the following rules.

Rule Q1’:
if (VFL is “Policed-EF”) {

Scheduling_Priority = 6;
Enqueue;

}

Rule Q2’:
else {

Scheduling_Priority = 1;
Enqueue;

}

Rules M1 and Q1’ refer to the same VFL value. VFL
“Policed-EF” connects a rule in the classification pol-
icy to Rules M1 and Q1’.

3.3 Selection
If a policy outputs multiple types of application results
depending on the conditions of the rules, and there are
multiple policies each of which inputs each of the re-
sults, the relationship between these three policies can
be called a selection. A two-way selection can be
represented by the following diagram.

N-way selection, where N is larger than 2, is also pos-
sible.

For example, in a Diffserv network, a policy for
policing may be combined with a policy for marking
and a policy for absolute dropping, and these policies
may be deployed to an edge router (see Fig. 3). Pol-
icy rules in the policing policy may be as follows.

Rule P1:
if (DSCP is “EF” && Information_Rate <= 2
Mbps) {

VFL = “Policed-EF”;
}

Rule P2:
else if (DSCP is “EF”) {

VFL = “Drop”;
}

Rule P3:
else {

VFL = “Policed-DF”;
}

Marking
Policy

Dropping
Policy

Policing
Policy

In profile

Out of profile
VFL = “Drop”

VFL =
“Policed-EF”, “Policed-DF”

Fig. 3. Policy selection in a Diffserv network

Rules P1 and P2 are applied to packets whose
DSCP is “EF”. This means they are higher-priority
packets. The packets are passed through an informa-
tion-rate meter. Rule P1 is applied to in-profile
packets, and Rule P2 is applied to out-of-profile
packets. Rule P3 is applied to lower-priority packets
whose DSCP is not “EF”. Rules P1 and P3 attach a
VFL that indicates that the packet must be forwarded
with higher or lower priority, and Rule P2 attaches a
VFL that indicates the packets must be dropped.

Rules in the marking policy may be the same as
Rules M1 and M2 in Section 3.2. A rule in the drop-
ping policy may be as follows.

4

Rule D1:
if (VFL is “Drop”) {

Absolute_Drop;
}

This rule drops all the packets that have “Drop” as
their VFL value.

3.4 Repetition
If a policy is repeatedly applied until a condition is
met, the relationship of the policy to itself can be
called a repetition. A repetition with only one policy
can be represented by the following diagram.

A repetition may contain two or more policies as
shown below.

In a Diffserv network, for example, a hierarchical
shaping function can be represented by a repetition. If
the following three rules are included in a queuing
policy, this policy represents a hierarchical shaping
function, as shown in Fig. 4.

Rule S1:
if (VFL is “Policed” && DSCP is “EF”) {

Scheduling_Priority = 6;
Maximum_Rate = 700 kbps;# shaping rate
VFL = “Shape2”;
Enqueue;

}

Rule S2:
else if (VFL is “Policed”) { # except EF

Scheduling_Priority = 5;
Maximum _Rate = 500 kbps; # shaping rate
VFL = “Shape2”;
Enqueue;

}

Rule S3:
else if (VFL is “Shape2”) {

Scheduing_Algorithm = Priority_Queuing;
Maximum_Rate = 1 Mbps; # shaping rate

200 kbps (700 k + 500 k – 1 M) or
less traffic may be dropped here.

VFL = “Outgoing”;
Enqueue;

}

Rule S1

Rule S2

Rule S3

A Queuing Policy

Iteration 1

Iteration 2
Priority = 6

Priority = 5 Priority
queuing

VFL =
“Policed” VFL = “Shape2” VFL =

“Outgoing”

Fig. 4. Policy repetition for a Diffserv network

In this example, Rules S1 and S2 assign a virtual
attribute called Scheduling_Priority to the packets and
then the rules queue them. Each rule in the queuing
policy has its own queue. Rule 3, which schedules
packets by using a priority queuing algorithm, pulls
off packets from the queues according to the Sched-
uling_Priority. VFLs are used for loop control. A
different VFL value is used for each iteration. In this
example, “Policed” is used for the first iteration, and
“Shape2” is used for the second. When “Outgoing” is
set as a VFL, there is no rule whose condition matches
this VFL in this policy, so the loop terminates.

In this example, the number of repetitions is only
two, but it may be an arbitrary value. This number,
however, is usually assumed to be constant, and the
rule to be applied in each iteration is usually different.
Otherwise, mapping the combined policies to the net-
work device functions is difficult, and infinite repeti-
tion might occur.

4. Methods of Policy Organization
In this section, two methods are defined for organizing
combined policies. They are explained using exam-
ples, and compared.

4.1 Definitions
A set of combined policies can, in a wider sense, be
regarded as a single “policy”. Thus, a compound pol-
icy is defined as a set of combined policies collected
for a specific organizational purpose.

There are two methods for organizing combined
policies.

1. Homogeneous organization: If no compound poli-
cies are used, and the policies are organized such
that all rules in a policy have the same type of con-
ditions and the same type of actions, the policies
are said to be organized homogeneously.

2. Heterogeneous organization: If the policies are
not organized homogeneously, the policies are said
to be organized heterogeneously.

In a typical homogeneously-organized policy, all the
rules, except the default rule (the rule applied when
the conditions of all other rule are not satisfied), test
the same tag, and the actions of all the rules are the
same type.

In heterogeneous organization, a compound policy

5

may contain other compound policies and non-
compound policies. Thus, compound policies are
organized in a recursive way, and they may contain
homogeneously organized policies.

In homogeneous organization, the same type of
rules (instead of instructions) are applied to multiple
data. In heterogeneous organization, different types of
rules (instead of instructions) are applied to multiple
data. Homogeneous organization is, therefore,
analogous to single-instruction-stream multiple-data-
stream (SIMD) [Fly 66] and heterogeneous organiza-
tion is analogous to multiple-instruction-stream multi-
ple-data-stream (MIMD) in parallel processing
[Fly 66].

4.2 Examples
All the policies described in Section 3 are homogene-
ous. An example of homogeneously-organized set of
policies for a Diffserv is shown in Fig. 5. An example
of heterogeneously-organized set of policies for a
Diffserv is shown in Fig. 6. The functions of both sets
of policies are identical. These policies are only de-
ployed to the outbound interface of an ingress edge
router (Fig. 7). They classify and mark the packets,
police the flow, and then queue and schedule the
packets. There are two classes of service: premier and
default. A customer whose IP address is 192.168.1.1
is a premier service customer here.

In Fig. 5, classification policy C’ classifies the
packets and attaches VFLs. Policing policy P’ polices
the classified traffics. P2’ drops the excess higher-
priority traffic, but P3’ allows all the traffic to pass
through (because the bandwidth for the lower-priority
traffic do not need to be limited). P’ contains rules
similar to P1, P2, and P3 (described in Section 3.3),
but the rules in P’ test VFLs instead of DSCPs.

If a flow from the default service customer is de-

tected (C2’), default service policy De is applied. A
random dropping is applied to this flow (D2’), and the
packets are marked 0 (“DF”) on the DS field (M2’)
and queued. Finally, a Scheduling_Priority attribute is
attached (Q2’’).

The premier and default traffics are merged into
priority scheduler S’. The premier traffic has a higher
priority.

Marking policy M and dropping policy D are ap-
plied in parallel. M contains rules identical to M1 and
M2 in Section 3.2. D drops all or part of the traffic if
necessary. In the case of in-profile higher-priority
traffic, the packets need not be dropped. So Rule D0,
which explicitly passes through the traffic, is applied.
Rule D1 is an absolute dropping rule, and is the same
as that described in Section 3.3. Rule D1 drops the
out-of-profile packets detected by Rule P2’. Rule D2
is a random dropping (WRED) rule applied to lower-
priority packets.

Next, queuing policy Q’ is applied and then sched-
uling policy S’ is applied. Q’ contains rules identical
to Q1’ and Q2’ in Section 3.2. S’ is different from the
scheduling policy shown in Section 3.4. It is a simple
priority scheduler.

In Fig. 6, if the premier service customer’s flow is
detected by Rule C1’ in classification policy C’, pre-
mier service policy Pr is applied. C’ is identical to C’’
in Fig. 5. Pr is a compound policy. The bandwidth is
limited to 2 Mbps by the only rule in Policy P’’. Out-
of-profile packets are dropped by the only rule in
Policy D1’. In-profile packets are marked “EF” on
the DS field [Nic 98] and queued with the Schedul-
ing_Priority attribute by rules in Policies M1’ and
Q1’’. Policies M1’ and Q1’’ can be applied in paral-
lel; i.e., packet marking can be done at anytime before
the packet leaves the queue.

(S1’)

(P1’)

Source_addr
is 192.168.1.1

Otherwise

(Q’) Queuing
Policy

Rate <=
2 Mbps

(C’) Classification policy (P’) Policing policy (S’) Scheduling
policy

(C1’)

(C2’)

(D) Dropping policy

No policing

(P3’)

VFL =
“Higher_
Class”

Otherwise

VFL =
“Lower_
Class”

(P2’)

(M1) (M2)

(M) Marking Policy

Absolute drop

(D1)

Random drop

(D2)

No drop

(D0)

Priority
Scheduling

Lower-class
queuing

(Q1’)

(Q2’)

Higher-class
queuing

Fig. 5. A homogeneous policy set for Diffserv

6

4.3 Comparisons
Homogeneous organization is more device-oriented
because rules of the same type are collected and a
policy type usually represents specific sets of device
functions, such as those in Fig. 5. This structure may
be directly mapped to pipelined or SIMD packet-
processing hardware, such as the routing and QoS
processors in Hitachi’s GR2000 router [Aim 00] and
network processors. Homogeneous organization,
thus, seems better suited to device and performance
management purposes, and to high-speed network.
This is because pipeline processing offers better per-
formance and translating a heterogeneous set of poli-
cies to a homogeneous set is not an easy task.

Heterogeneous organization is more service-
oriented because compound policies usually represent
abstract functions. In Fig. 6, Pr and De represent,
respectively, services for premier and normal cus-
tomer policies. We can see that heterogeneous or-
ganization seems better suited to service management.

Heterogeneous organizations are usually assumed
to contain less rules than homogeneous ones, because
two or more policies in a heterogeneous organization
correspond to a single policy in a homogeneous one.
Policy, such as P’, D1’, M1’, and Q1’’, often contain

only one rule. Because this may increase the com-
plexity of the set of policies, the policy editing inter-
face must reduce the complexity.

5. Discussions
The advantages of explicitly specifying policy-combi-
nation types are discussed below.

5.1 Clarification of the semantics
The semantics of a policy system can be clarified by
explicitly specifying policy combination types. In
commercial network policy systems, the relationships
between policies are not explicitly specified. If the
application order is inappropriate, policy applications
may cause erroneous results. For example, the rule in
the MF classification and marking policy described in
Section 3.1 marks “EF” in the DS field. If a rule in a
queuing policy contains the condition “DSCP is EF”,
and this rule is applied before the marking, the condi-
tion evaluation will cause a wrong action as a result.
This problem can be avoided by specifying these poli-
cies as a concatenation. Introducing a parallel appli-
cation causes a similar effect.

Introducing a selection also allows us to clarify the
relationship between alternative policies. For exam-
ple, an alternative structure may be represented by
using concatenations. The selection in Fig. 3 may be
simulated by the following diagram.

Marking
Policy

Dropping
Policy

Policing
Policy

This works correctly because the dropping policy
works exactly on the packets to be dropped. How-
ever, if the order of the dropping and marking policies
are altered and the marking policy rewrites the VFL,
these policies generate a wrong result. The following
rule is assumed to be used instead of M2 in marking
policy M.

(P’’)

Source_addr
is 192.168.1.1

Otherwise

Mark EF

Higher class
queuing

(M1’)

(Q1’’)

Drop

Rate <=
2 Mbps

(C’) Classification policy

(Pr) Premier service policy

(D1’)

Mark DF

Lower class
queuing

(M2’)

(Q2’’)

(De) Default service policy

Random drop

(S’) Scheduling
policy

(C1’)

(C2’)

(D2’)

Priority
Scheduling

(S1’)

Fig. 6. Heterogeneous set of policies for Diffserv

Classification policy, Premier service policy,
Default service policy, and Scheduling policy

Deploy

Outbound
interface

Fig. 7. Policy deployment

7

Rule M2*:
else {

DSCP = “DF”;
VFL = “Policed-DF”;

}

Then, Rule M2 will be applied to the out-of-profile
packet, the VFL will be rewritten, and the packet will
not be dropped. This problem can be avoided if a
selection is used instead of the concatenations.

5.2 Developing policy systems suited to general use
If the policy combination type is explicitly specified
for each policy combination, the policy system be-
comes more suited to general use. If the relationships
between policies are not explicitly specified by the
user, the order of the applications must, at least be
predefined in the policy system or inferred from the
context. If the order is predefined, the usage of the
policy system is restricted, and the system is less
suited to general use. Inferring relationships from
generic knowledge on policies is not easy. If the rela-
tionship is explicitly specified, the policies are con-
text-free and, thus, more suited to general use.

In addition, introduction of a repetition makes re-
peated application of a policy possible. It cannot be
specified in conventional policy systems.

5.3 Adaptation to a variety of devices
If the policy combination types are explicitly speci-
fied, the repertory of executable policies can be ex-
tended. If the application order is strictly sequential
(i.e., each pair of contiguous policies are specified as
a concatenation), the policies may be unmappable to
device functions because the functions are limited and
the application order is constrained. For example, in
some router, packets must be marked before random
dropping. If random dropping strictly precedes mark-
ing in the policy description, the policy translator,
which resides in the device or in a proxy, may fail to
convert the policy to an executable commands.

If parallel applications and selections are specified,
however, the policies may be translated. For example,
if random dropping and marking are specified as par-
allel application as shown in Fig. 5, the policies can be
translated into router commands without a possibly
complicated semantic analysis.

5.4 Optimization
Policies specified by an operator may be inefficient
and may have to be optimized. If the types of policy
combination are explicitly specified, the possibility of
optimizing policies is improved by parallel application
or reordering policies. If the function of the target
router is flexible enough for a number of parallel ap-
plications to be specified, and the parallel applications
of policies are translated into parallel commands, the
performance will be better than that associated with
sequential commands. However, if the parallel appli-

cations are specified and the performance is better for
a specific command-execution order, performance can
be optimized.

6. Summary and Conclusion
When two or more policies work together, four types
of policy combination can be distinguished: concate-
nation, parallel application, selection, and repetition.
If the policy-combination types are explicitly specified
in a policy-based system:

1. the system will be semantically clearer,

2. the system will be better suited to general use,

3. the range of functionality will be wider because the
range of translatable policies widens, and

4. the possibility of policy optimization will be im-
proved.

We can add policy combination specification,
which includes type specification, to existing policy-
based systems. However, if a new policy language
and system is designed, we can obtain a well-defined
and more concise policy-based system.

If policy combinations are specified in a policy
system, two types of policy organizations can be dis-
tinguished: homogeneous and heterogeneous organi-
zations. Heterogeneous organization is more service-
oriented, so it seems to be better suited to service
management. Homogeneous organization, however,
is likely better for device and performance manage-
ment purposes. It is advantageous in high-speed net-
works.

Future work includes designing a new policy sys-
tem in which policy combinations and organization
can be explicitly specified. Future work also includes
developing methods for translating a set of combined
policies into a set of policies that can be implemented
by network devices. The translation methods to be
developed include policy fusion, which merges two or
more policies into one, and policy division, which
splits a policy into two or more policies.

Acknowledgments
The author would like to thank Brian O’Keefe from
Hewlett-Packard for his contributions to the develop-
ment of policy combination and organization con-
cepts, especially on the repetition.

References
[Aim 00] Aimoto, T., and Miyake, S., “Overview of

DiffServ Technology: Its Mechanism and Imple-
mentation”, IEICE Transaction on Information and
Systems, Vol. E83-D, No.5, pp. 957–964,
http://search.ieice.or.jp/2000/pdf/e83-d_5_957.pdf,

8

The Institute of Electronics, Information and
Communication Engineers, 2000.

[All 83] Allen, J. R., Kennedy, K., Porterfield, C., and
Warren, J., “Conversion of Control Dependence to
Data Dependence”, 10th ACM Symposium on
Principles of Programming Languages, (POPL
83), pp. 177–189, 1983.

[Ber 99] Bernet, Y., et al, “A Framework for Differen-
tiated Services”, draft-ietf-diffserv-framework-
02.txt, Internet Draft, February 1999.

[Fly 66] Flynn, M. J., “Very High-speed Computing
Systems”, Proc. IEEE, 54:12, pp. 1901–1909,
1965.

[For 81] Forgy, C. L., “OPS5 User’s Manual”, Tech-
nical Report CMU-CS-81-135, Carnegie Mellon
University, Dept. of Computer Science, 1981.

[Jac 99] Jacobson, V., Nichols, K., and Poduri, K.,
“An Expedited Forwarding PHB”, RFC 2598, June
1999.

[Kan 99] Kanada, Y., Ikezawa, M., Miyake, S., and
Atarashi, Y., “SNMP-based QoS Programming In-
terface MIB for Routers”, draft-kanada-diffserv-
qospifmib-00.txt, Internet Draft,
http://www.kanadas.com/activenet/draft-kanada-
diffserv-qospifmib-00.txt, October 1999.

[Kan 00a] Kanada, Y., “A Representation of Network
Node QoS Control Policies Using Rule-based
Building Blocks”, International Workshop on
Quality of Service 2000 (IWQoS 2000), pp. 161–
163, June 2000.

[Kan 00b] Kanada, Y., “Two Rule-based Building-
block Architectures for Policy-based Network Con-
trol”, 2nd International Working Conference on
Active Networks (IWAN 2000), Lecture Notes in
Computer Science, No. 1942, pp. 195-210,
Springer, October 2000.

[Kuc 81] Kuck, D. J., Kuhn, R. H., Padua, D. H.,
Leasure, B., and Wolfe, M., “Dependence Graphs
and Compiler Optimizations”, 8th ACM Sympo-
sium on Principles of Programming Languages
(POPL 81), pp. 207–218, 1981.

[Nic 98] Nichols, K., Blake, S., Baker, F., and Black,
D., “Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers”,
RFC 2474, December 1998.

