
03/09/01

1

Rule-Based Building-Block Architecture for Policy-based Networking*

Yasusi Kanada
Systems Development Laboratory, Hitachi, Ltd.

Totsuka-ku Yoshida-cho 292, Yokohama 244-0817,
Japan

E-mail: kanada@sdl.hitachi.co.jp

Brian J. O’Keefe
Hewlett-Packard Company

3404 East Harmony Road, Ft.Collins, CO 80528-9599,
USA

E-mail: brian.okeefe@hp.com

Abstract: We developed two rule-based building-block
architectures, i.e., pipe-connection and label-connection
architectures, for describing complex and structured
policies, especially network QoS policies. The latter is
focused on in this study. The relationships or connec-
tions between building blocks are specified by the da-
taflow and control flow between them. The dataflow is
specified by tags, including virtual flow labels (VFLs),
which are data attached to “outside packets”. The con-
trol flow can be classified and specified by four control
structures: concatenation, parallel application, selection,
and repetition. We have designed fine-grained and
coarse-grained building blocks and methods for specify-
ing dataflow and control flow in differentiated services
(Diffserv), and implemented the coarse-grained ones in a
policy server. Two cases of building-block use are de-
scribed, and we concluded that there are five advantages
of building-block-based policies, i.e., expressibility, uni-
form semantics, simplicity, flexibility, and management-
task-oriented design. We also developed techniques for
transforming building-block policies into executable
ones, which are called policy division and fusion.

1. Introduction

Policies can control computer systems, networks, or even
systems that contain human beings as their components.
In this paper, we focus on policy-based networks with
relatively low-level policies that a computer can translate
into network node configurations, and we use network
QoS examples. However, the concepts described in the
present paper are generic, and can be applied to other
applications such as access control or security (encryp-
tion/decryption) control.

Policy-based networks are networks that are controlled
by policies. Policies are defined by users, a network ad-
ministrator, or operators, which are managed by policy
servers, and deployed to network nodes. A policy is usu-
ally described as a sequence of condition-action rules:

if (condition1) action1, if (condition2) action2,
…, if (conditionn) actionn.

* A (probably final) version of this paper was published in the
Journal of Network and Systems Management (Vol. 11, No. 3,
September 2003).

A policy is executed as follows: the left-most rule whose
condition is evaluated to be true is selected, and the cor-
responding action is executed.1 Only one of the actions
within the policy will be executed, even if subsequent
rules have a true condition.2

Policy-based networking technologies have been de-
veloped to reduce the complexity in configuration of a
network and its nodes. Policies are replacements of ven-
dor- and device-dependent configuration commands, and
they are derived from SLSs (service-level specifications).
Eash SLS is the specification of a QoS (i.e., availability,
throughput, delay, etc.) for a customer, and an SLS is
derived from an SLA (service-level agreement), which is
a contract between a network operator and a user or be-
tween two or more network operators.

Policy-based networking has three major characteris-
tics. First, it is easy to create, to modify, and to delete
policy rules dynamically without interfering with other
rules as far as the rules do not interfere with each other
(i.e., if they have been defined ideally). A rule is a fine-
grained module that can be added, deleted, or modified
independently of other rules. Second, the amount of net-
work configuration tasks can be reduced by using poli-
cies, because one policy can be used for policy targets
which are of various types, i.e., network nodes or inter-
faces, and which have been developed by a variety of
vendors. Third, heterogeneous networks can be con-
trolled according to a unified set of policies that follow
the IETF (Internet Engineering Task Force) standards.
Policies are modeled by the Policy Framework Working
Group of the IETF [26, 31]. A protocol called COPS
(Common Open Policy Services) [9], its usage called
COPS-RSVP [11] and COPS-PR [6], and data formats
conveyed by COPS-PR, which are called PIBs (policy
information bases), e.g., Diffserv PIB [7], are also stan-
dardized by the IETF. Policies for systems management

1 In some applications, a more complex policy model is re-
quired. We have used this model in the present paper for the
sake of simplicity.
2 These semantics may seem to be too restrictive. However,
this constraint is at least required in the pipe-connection model
described in Section 2.2, and more complicated policies can be
constructed using such primitive policies by policy combina-
tion.

03/09/01

2

are modeled in the OSI (Open Systems Interconnection)
[13].

In addition to the first characteristic mentioned above,
i.e., modularity, the rule-based architecture results in two
additional characteristics. First, SLA or SLS, which are
also declarative, can be more easily translated into polici-
es because rule-based policies are declarative. Second,
by using technologies developed for rule-based languages
such as OPS5 [10] or Prolog, declarative policies can be
regarded as executable programs with unified semantics.
Policies must be executable when deployed to network
nodes. These characteristics are more extensively ex-
plained by Kanada [16].

In policy-based networks, two or more policies often
work in cooperation, and a high-level policy may have to
be decomposed into two or more low-level policies. For
example, in a QoS-assured network service such as Diff-
serv (Differentiated Services) [5], packet flows from
service subscribers are classified and policed (i.e., limited
to a certain bandwidth) at an edge router, and queued and
scheduled in each router that the flow passes through.
Thus, policies for classification, policing, and queu-
ing/scheduling must cooperate to assure QoS. If the
service is typical Diffserv, the policy for classification
specifies the class or the DSCP (Diffserv Code Points)
[29] of the flow, and the policy for queuing/scheduling
specifies the testing of the DSCPs to determine the algo-
rithms and parameters for queuing and scheduling re-
quired by packets in that class. These policies can be
regarded as components of a network-wide QoS policy.
There should, therefore, be means of structuring the poli-
cies, i.e., building blocks (or components) that the polici-
es should be constructed from and the relationships
between the building blocks.

Conventionally, two or more cooperating policies are
described as separate policies with no explicit means for
cooperation. They cooperate implicitly and in an ad-hoc
way. This works well for many applications and for a
limited but wide range of situations. For example, in
Diffserv, separate policies work well when edge and core
functions are deployed to different network interfaces and
the functions are simple. However, there are two major
reasons why the concept of policy combination [17], or
an explicit and systematic method of cooperation, is re-
quired. One reason is that policy description should be
more expressive and flexible. It is needed to describe the
relationship between policies when the relationship is not
predefined. If it is required to specify the relationship
in/by the policies for the sake of expressibility and flexi-
bility, policy combination is required. The other reason
is that complexity and ambiguity in policy description
should be reduced. If the relationship is implicit, it may
become ambiguous and may easily cause misunder-
standings. In addition, because no information can be
passed from a deployed policy (i.e., a policy that is being

executed) to another, the same data may have to be com-
puted two or more times when they use the same data.
For example, in Diffserv, a classifier, which is a list of
conditions in the policy and classifies the packets, may be
duplicated to each policy. This duplication may cause
serious semantic problems [18] and bugs (errors in poli-
cies).

There are also two more concrete reasons or advan-
tages in the use of building blocks. One advantage is
reusability. If the values of every constant and variable
in a building block are fixed, the building block has fewer
chances of being reused. In contrast, if we can give the
values as parameters to the building blocks, we can
maximize reusability. There are examples of parametric
building blocks are shown in Section 4.1. The other ad-
vantage is the possibility of optimization. Building-block
structures are required for optimizations of policies be-
cause an optimization is a transformation of the structure
of a policy [16].

Moffett and Sloman [25] analyzed policy conflicts,
and Lupu and Sloman [22] developed methods for han-
dling them. Conflicts are types of relationships between
policies. They are usually negative relationships because
they cause inconsistencies among policies and because
they accidentally and implicitly occur. In contrast, the
concept of policy combination was developed for explic-
itly specifying a positive relationship between policies.

Section 2 of this paper describes two rule-based
building-block architectures for policies, or two policy-
combination architectures, i.e., the pipe-connection and
the label-connection architectures. Dataflow and control
flow between building blocks are classified in Section 3.
There are examples of building blocks, including ones
that have been implemented in a policy server in Sec-
tion 4. Techniques for the transformation of building-
block policies into executable ones, i.e., policy division
and fusion, are also briefly described in Section 5. Relat-
ed work is reviewed in Section 6.

2. Two Rule-based Building-Block Model
Architectures

In this section, two policy architectures are introduced
after common concepts are explained. These architec-
tures were originally proposed and compared in previous
work [15, 16].

2.1 Structure of Building Blocks
In both architectures, a policy or policy rule consists of
building blocks and the connections between them. A
building block is a rule or a list of rules and is executed
as follows. A rule is selected if the input packet matches
the condition specified in the rule. Then the action speci-
fied in the rule is executed and an output packet is gener-
ated. If no condition in the rule set matches the input

03/09/01

3

packet, no action is taken and no packet is outputted.
Thus, a building block inputs a stream of packets, or a
flow, filters it, and either splits it into multiple flows or
merges multiple flows into one.1

A network node function, or a whole network node,
can be modeled as a building block or a collection of
building blocks. A building block has input ports and
output ports. Building blocks are combined by connect-
ing each input port and output port. Consequently, the
function of the network node can be represented by a
graph, usually a DAG (directed acyclic graph), in which
the vertices represent the building blocks. The whole
network can also be modeled by using building blocks.
Each function in the network domain can be represented
by a graph. The task of a policy server is to input a high-
level policy, to construct a graph, to decompose this
graph into subgraphs or to transform this graph into
lower-level graphs, and to deploy each subgraph to each
router in the domain. The edges between the subgraphs
are mapped to the lines between the network nodes.

1 The rule is not necessarily selected when a packet arrives. If
the condition can be evaluated before the packet arrives, the
rule can be selected beforehand. For example, if the policy
controls a control-plane function such as routing, the condition
can usually be evaluated beforehand.

The function of each building block may be described
by using smaller building blocks, i.e., fine-grained poli-
cies, or they may be implemented by using sequences of
executable control commands, such as CLI (command-
line interpreter) commands or SNMP messages.

2.2 Pipe-connection Architecture
The pipe-connection architecture is explained by using
the example in Figure 1(a). This example is a Diffserv
router configuration policy. This policy is a device-level
policy and can partially implement a network-level pol-
icy.

In the pipe-connection architecture, each building
block has a fixed number (usually one) of input and out-
put ports. Each input or output port has a port identifier.
Port identifiers can be numbers or alphanumeric identifi-
ers, but they have been assumed to be ordinal numbers
here.

Building blocks are connected by pipes. Pipes repre-
sent data, which are usually data streams. Pipes are
uniquely identified by their tags. The beginning of a pipe
is connected to an output port of a building block. The
end of the pipe is connected to an input port of another
building block. In the example shown in Figure 1(a), all
the pipes represent containers (i.e., pipes) for packet
streams. Conceptually, a packet stream flows in each

MeteringClassification

otherwise ?
 Absolute_
dropping

Scheduling

Algorithm=priority

high
low

or

Source_ip ==
“192.168.1.*” ?

Marking1
DSCP = 46

or

C1 P1

P2

M1

Marking2
DSCP = 0

C2
M2

Info_rate
<= 1Mbps ?

otherwise ?

1 1

2

1 1

2

1

1

1 1

2

1
1

1

(a) A policy using pipe-connection architecture

MeteringClassification

if Label==“C1” &&
 Info_rate >
 1 Mbps then
 Label = “P2”

Absolute_dropping

Scheduling
Algorithm=

“priority”

or

if Source_ip ==
 “192.168.1.*” then
 Label = “C1”

Marking1

or

Marking2

if Label==“C1” &&
 Info_rate <=
 1Mbps then
 Label = “P1”

otherwise
 Label = “C2”

if Label==“C2” then
 Label = “dscp(0)”
 Priority = “low”

if Label == P1 then
 Label = “dscp(46)”
 Priority = “high”

if Label == “P2”
 then Discard

(b) A policy using label-connection architecture

Figure 1. Policies using two building-block architectures

03/09/01

4

pipe. When a packet flows into a building block as an
input, one (or zero) packet flows out from the building
block as an output. Packets enter a building block
through an input port and exit through an output port. In
the majority of the building blocks, the number of pack-
ets is preserved, i.e., packets are not implicitly dupli-
cated, merged, or discarded; a packet is outputted to only
one of the output ports and two packets that come
through the same or different input ports are never
merged into one packet.1

Figure 1(a) shows six building blocks: Classification,
Metering, Marking1, Absolute_dropping, Marking2,
and Scheduling. The Classification and Metering
building-blocks contain two sub-blocks, or rules. Other
building-blocks can contain only one sub-block. The
Classification and Metering building-blocks are con-
nected by a pipe called C1, which connects output port 1
to input port 1. The Classification building-block has
two output ports. Each packet that flows into this build-
ing-block flows out from only one of these output ports.
The Absolute_dropping building-block has no output
ports; packets that flow into a Absolute_dropping
building-block never flow out. The Scheduling build-
ing-block has two input ports, but other building-blocks
have one input port.

This architecture can be properly represented using a
logic-based concurrent programming language such as
GHC [32], Concurrent Prolog [30], or Parlog [8]. Thus,
we can provide uniform semantics to policies in this ar-
chitecture. These languages are descendants of Prolog,
which is based on forward-chaining logical inference.
However, parallel or pipelined programs can be de-
scribed using these languages, as opposed to Prolog, whi-
ch is a sequential programming language. The capability
of describing pipelined processing is better suited for
describing stream processing. Therefore, these languages
are especially suited for describing low-level network
policies. By using a logic-based language, a program or
a policy can be both declarative and executable.

In a logic-based concurrent language, each rule con-
sists of a guard and a body:

rule_name(Parameters) :– Guard | Body.
A guard is similar to a condition list and a body is similar
to an action list. A rule whose guard is evaluated to be
true is selected. As both a guard and a body are a list of
predicate (i.e., policy) calls, they consist of building
blocks, which may be nested.

The above-mentioned languages are suited to de-
scribing data stream processing. Therefore, pipe-
connection models can be expressed directly. Kanada
[15] defined a language for this architecture, SNAP

1 This “conservation law” requires only one of the actions
within a policy to be executed in the pipe-connection architec-
ture; i.e., only one rule must be selected.

(Structured Network programming by And-Parallel lan-
guage). In SNAP, each building block is represented by
a predicate, which consists of clauses (i.e., rules).
Building blocks are connected by logical variables. This
means a logical variable is used as a pipe.

2.3 Label-connection Architecture
The policy using the label-connection architecture is ex-
plained through Figure 1(b). The function of this policy
is the same as that in Figure 1(a). In this architecture,
each building block may have any number of input and
output data. Variables, such as the Source_ip or Priority
in Figure 1(b), represent input/output data. Building
blocks contain one or more rules. For example, both the
Classification and Metering building-blocks have two
rules. The order of execution of the building blocks is
partially specified; i.e., the order constraints are repre-
sented by a directed graph. In Figure 1(b), six building
blocks are combined according to the arrows, which
specify the order of execution. For example, the Classi-
fication building-block, which contains two filtering
rules, is connected to the Metering and Marking2
building-blocks. As a result, the Metering and Mark-
ing2 building-blocks will be executed just after executing
the Classification building-block. Whether the Meter-
ing or Marking2 building-block is executed depends on
the conditions of the rules in the Metering and Marking2
building-blocks and on the value of the packet. If the
packet matches a condition in the Metering building-
block, this building block is executed.

Each rule attaches a virtual flow label (VFL), called
“Label” in Figure 1(b) (explained in Section 3.1) to each
packet in a flow or to the whole packet flow. Only one
VFL can be attached to a flow or packet. In Figure 1(b),
the rules in the Classification and Metering building
blocks assign a VFL, and the Marking1 and Marking2
building blocks assign a DSCP as the label. The initial
value of a VFL is a specific value, e.g, "" (an empty
string).

Label-connection architecture can properly be repre-
sented by using a language for production systems similar
to OPS5 or other forward-chaining rule-based languages
for developing expert systems, or by using a language for
active databases [23]. Thus, we can provide uniform
semantics to policies in this architecture as well. In such
a language, each rule is a condition-action rule or event-
condition-action (ECA) rule [23].2

Conventional languages for production systems have
no method for structuring rules (i.e., building blocks).
There should, therefore, be a method for defining a col-
lection of rules, i.e., a policy, and there must be a method

2 We applied a restriction where only one of the actions within
a policy will be executed. However, it can be removed in the
label-connection architecture.

03/09/01

5

of ordering policies. A method of ordering policies is
described in Section 3.2.

3. Dataflow and Control Flow in Label-
connection Architecture

Kanada [16] compared pipe- and label-connection archi-
tectures. He concluded that label-connection architecture
is more practical in the short term because it is closer to
conventional policy architecture and has greater advan-
tages for policy specification and deployment using the
current technologies.1 This section, thus, focuses on the
label-connection architecture, where a connection be-
tween building blocks is specified by the dataflow and
control flow between the building blocks. Dataflow and
control flow are classified and discussed below.

3.1 Dataflow between building-block policies
To make two or more policy rules that belong to different
policies cooperate, information must be transferred be-
tween them. A piece of information transferred between
rules is called a tag. Tags can be real, i.e., in the packet,
or virtual, i.e., outside the packet (see Figure 2). A real
tag is conveyed by packets, so the two cooperating poli-
cies can exist in different network nodes. However, a
virtual tag is not conveyed by the packets themselves, so
the two cooperating policies must exist in the same net-
work node in which the virtual tag value can be stored or
transmitted implicitly, unless the virtual tag value is con-
veyed by some other means, such as wavelength or
physical location, similar to Generalized MPLS (multi-
protocol label switching) [4]. A tag causes explicit data
dependence [21] between policy rules.

Tags can be categorized as follows.

1. Labels: A tag may be used for selecting a rule from a
policy. This type of tag is called a label. A label con-
nects one rule to another (i.e., the label assigned by
one rule specifies the next rule to be applied). The
VFL is an alias of the virtual label. DSCPs (Diffserv
code points) [29] are used as real labels.

1 The advantages described by Kanada [16] are simpler rule
structures, simpler and more modular building block structures,
and more flexible tag (VFL) use. The only disadvantage is less
parallelism.

2. Attributes: A tag may be used in the action part of the
rule without selecting a rule. This type of tag is called
an attribute [16]. Virtual attributes are useful for hier-
archical scheduling, shaping, and policing. An exam-
ple of hierarchical shaping is described in Section 4.4.

A real tag usually has an integral value; a virtual tag
may have an integer or a character string. String values
are used throughout this paper. The string values are
usually translated into other types of data, such as integer
values by the policy server (PDP) or agent (PEP).

3.2 Control flow between building-block policies
Policies change the behavior of a network in a consistent
manner. Thus, a set of policies that work together may
be regarded as a distributed program. In procedural pro-
grams, such as those written in C or C++, there are four
relationships (control structures) between statements:
concatenation (sequential application), parallel applica-
tion, selection, and repetition. A set of policies can be
regarded as a rule-based program. Thus, the order of
application and the control dependence [1] of policies
must be specified. Thus, the relationships between poli-
cies can be classified into these four types [17].

3.2.1 Concatenation
If two policies are sequentially applied, the relationship
between these two policies can be called a concatenation.
For example, in a Diffserv network, a policy for packet
classification and marking and a policy for queuing may
be concatenated and deployed to an edge router. Fig-
ure 3(a) shows the policy and flow diagram. There are at
least two policy rules in the classification and marking
policy C.

In these rules, "EF" refers to expedited forwarding
[14], and "DF" refers to default forwarding or “best-
effort” forwarding. Note that the two policies are or-
dered by the concatenation, and the two rules in these
policies are connected by the DSCP. The concatenation
specifies the control dependence between the policies,
and the DSCP specifies the data dependence (a flow de-
pendence [21]) between them. The DSCP is used as a
real label in Rule Q1: DSCP "EF" connects Rules C1 and
Q1, and DSCP "DF" connects Rules C2 and Q2. Rules
Q1 and Q2 assume priority scheduling. This means a
priority scheduling rule is connected to these rules. The
EF traffic receives higher priority, and the DF traffic re-
ceives lower priority.

3.2.2 Parallel application
Two policies may be applied in parallel if they do not
conflict. In a Diffserv network, a marking policy and a
queuing policy may be applied in parallel. An example
of marking and scheduling policies, i.e., M and Q’, and
their flow diagram are shown in Figure 3(b). Here, the

64

1000

(a) Real tag (b) Virtual tag

 Packet Packet

Figure 2. Real and virtual tags

03/09/01

6

marking policy is separated from the classification policy.
Rule M1 is applied to higher-priority packets, and Rule
M2 is applied to other (lower priority) packets. The clas-
sification policy does not mark a DSCP, it just puts a
VFL on the packets. Rules M1 and Q1’ refer to the same
VFL value. The VFL "Policed-EF" connects a rule in the
classification policy to Rules M1 and Q1’.

3.2.3 Selection
If a policy outputs multiple types of application results
according to the conditions of the rules, and there are
multiple policies, each of which inputs each of the re-

sults, the relationship between these three policies can be
called a selection. N-way selection, where N is larger
than 2, is also possible.

For example, in a Diffserv network, a policy for
policing may be combined with a policy for marking and
a policy for absolute dropping, and these policies may be
deployed to an edge router (see Figure 3(c)). Policing
policy P in this figure can be explained as follows.

Rules P1 and P2 are applied to packets whose DSCP
is "EF". This means they are higher-priority packets.
The packets are passed through an information-rate me-
ter. Rule P1 is applied to in-profile packets, and Rule P2

C = { C1: if (Source_IP == x.x.x.x) { DSCP = "EF"; },
C2: if (Source_IP == y.y.y.y) { DSCP = "BE"; },
… }.

Q = { Q1: if (DSCP == "EF") {
Scheduling_Priority = 6;
Enqueue; },

Q2: if (true) {
Scheduling_Priority = 1;
Enqueue; },

… }

Classification
and Marking

Policy C

Queuing
Policy Q

(a) Concatenation
M = { M1: if (VFL == "Policed-EF") {

DSCP = "EF"; },
M2: if (true) {

DSCP = "DF"; }}.

Q’ = { Q1’: if (VFL == "Policed-EF") {
Scheduling_Priority = 6;
Enqueue; },

Q2’: if (true) {
Scheduling_Priority = 1;
Enqueue; }}.

M

Q’

(b) Parallel application
P = { P1: if (DSCP == "EF" &&

Information_Rate <= 2 Mbps) {
VFL = "Policed-EF"; },

P2: if (DSCP == "EF") {
VFL = "Drop"; },

P3: if (true) {
VFL = "Policed-DF"; } }.

Marking
Policy

Dropping
Policy

Policing
Policy P

In profile

Out of profile
VFL = “Drop”

VFL =
“Policed-EF”, “Policed-DF”

(c) Selection
S = { S1: if (VFL == "1") {

VFL = "2";
…; },

S2: if (VFL == "2") {
VFL = "3";
…; }}.

S1

S2

VFL = “1”

VFL = “2”

VFL =
“3”

S

(d) Repetition
Figure 3. Examples of control flows

03/09/01

7

is applied to out-of-profile packets. Rule P3 is applied to
lower-priority packets whose DSCP is not "EF". Rules
P1 and P3 attach a VFL that indicates that the packet
must be forwarded with higher or lower priority, and
Rule P2 attaches a VFL that indicates the packets must be
dropped.

Rules in the marking policy may be the same as Rules
M1 and M2 explained in Section 3.2.2. A rule in the
dropping policy is given as follows.

if (VFL == "Drop") { Absolute_drop; }.
This rule drops all the packets that have "Drop" as their
VFL value.

3.2.4 Repetition
If a policy is repeatedly applied until a condition is met,
the relationship of the policy to itself can be called a
repetition. A repetition may contain two or more poli-
cies. A repetition with only one policy P1 is represented
by Figure 4(a) and a repetition with two policies by Fig-
ure 4(b). Figure 3(d) shows the simplest case; i.e., where
there is only one policy with two iterations. In this ex-
ample, the VFL, "1", is used for the first iteration, and
"2" is used for the second iteration. When "3" is set as a
VFL, there is no rule whose condition matches this VFL
in this policy, so the loop terminates. There are only two
iterations in this example. However, it can be any num-
ber. If a different rule is applied for each iteration, the
number of iterations is constant because the number of
rules is fixed. However, as a rule can be applied repeat-
edly, the number of iterations is variable.

P1 P2
P1

(a) Repetition
with a policy

(b) Repetition with two poli-
cies

Figure 4. Two examples of repetition

4. Differentiated Service Policies Using
Building-Blocks

Building blocks for Diffserv policies and methods of
combining them are described in this section. Usages of
the policies are also discussed. Two sets of building
blocks, i.e., fine-grained ones [16], which are conceptu-
ally simpler, and coarse-grained ones [19], which are
easier to use, are explained, and use cases of the coarse-
grained building-blocks are presented.

4.1 Fine-grained building-blocks
Kanada [15, 16] explained five types of primitive fine-
grained building-blocks for DiffServ, i.e., filtering, me-
tering, marking, dropping, and scheduling rules. The
building blocks were designed both for the label- and
pipe-connection architectures. The building blocks de-

fined here are similar to the objects defined in Diffserv
MIB [3], Diffserv PIB [7], or the QoS Information Model
[27]. However, the semantics can be defined more
clearly by using a rule-based language.

Filtering, marking, and dropping rule sets are applied
to a packet stream only once because repetitive applica-
tion of these rules is unnecessary. Metering, merging,
and scheduling rules can be applied to a packet stream
two or more times because repetitive applications of the-
se rules are sometimes necessary.

Rules are denoted using the following syntax: ruleTy-
peName[parameters]. The parameters in brackets have
their own names and values. We can reuse building
blocks by replacing the values of parameters.
(1) Filtering rules

Filtering rules represent a part of an MF (multi-field)
or a BA (behavior aggregate) classifier. An MF clas-
sifier is a function that classifies packets by the source
and destination IP addresses, IP protocol, source and
destination IP ports and DSCP in the packet header.
A BA classifier is a function that classifies packets
only by the DSCP. The values used for the classifica-
tion are specified as parameters in the filtering rule. If
a packet meets the condition in the rule, it is outputted
to the stream. Otherwise it is dropped. Examples of
filtering rules are as follows.

filter[Source_IP = "192.168.1.*"].
// A part of an MF classifier.

filter[DSCP = 46]. // A part of a BA classifier.
The first example is almost identical to the Classifi-
cation policy in Figure 1(a) or Figure 1(b); it can be
implemented by using either the pipe- or label-
connection architecture and it can be used in one of
these architectures.

(2) Metering rules
Metering rules only pass traffic that conforms to the
profile contracted by an SLA (service-level agree-
ment). Metering rules can be implemented by using a
token-bucket meter or some other type of meter. The
average maximum information rate and the bucket size
can be specified as parameters. An example of a me-
tering rule is

meter[Max_information_rate = 1 Mbps].
This rule is very similar to the Metering policy in Fig-
ure 1(a) or Figure 1(b). The difference is that the
maximum rate is specified using an equal sign (“=”)
instead of inequality for the sake of syntactic uniform-
ity.

(3) Marking rules
Marking rules write a DSCP into the DS field of the
packets in the input stream. All the packets are then
outputted to the output stream. The only parameter
for marking rules is the DSCP. An example is

03/09/01

8

mark[DSCP = 46].

(4) Dropping rules
Dropping rules drop all packets in a stream. There are
two types of dropping rules in a label-connection
model: absolute dropping rules and random dropping
rules. Absolute dropping rules drop all packets. Ran-
dom dropping rules drop packets by using a weighted
random-early-discard (WRED) or similar algorithm.
An example of a random dropping rule is

randomDrop[QMin = 10 kB, QMax = 20 kB,
PMax = 0.1].

The function of random dropping rules is included in
the scheduling rules in a pipe-connection model, so
they do not exist. There are no parameters to be speci-
fied for the absolute dropping rule,

absoluteDrop.

(5) Scheduling rules
Scheduling rules are used for merging streams through
scheduling. The parameters of a scheduling rule
specify the method and parameters for controlling en-
queuing and dequeuing. The scheduling algorithm
and its parameters can be specified in scheduling
rules, which can also be used to control shaping. The
maximum and minimum output rate (or both) can be
specified. An example is

schedule[Algorithm = priority].
In this example, input packets are scheduled by using
a priority scheduling algorithm. Input packets should
have priority attributes, which are given by another
scheduling rule.

In addition, a type of rule called a “merging rule” is re-
quired for the pipe-connection architecture [16]. A
merging rule merges data streams coming in through two
or more pipes and going out through a single pipe. A
merging rule is not application-specific but generally
required in this architecture. Merging rules are necessary
because flows cannot be merged implicitly in the pipe-
connection architecture in contrast to the label-
connection architecture in which flows are implicitly
merged.

Examples of compound policies using the fine-grained
building-blocks mentioned above are in Figures 1 and 2.
In the pipe-connection architecture, both the dataflow and
control flow between the building blocks are specified by
pipes. In the label-connection architecture, the dataflow
is specified by VFLs and the control flow is specified by
ordering the policies.

4.2 Coarse-grained building blocks
An example of coarse-grained building-blocks, which are

based on the label-connection architecture, and a method
for combining them are described below. Policies made
of these building blocks are used [19] in a commercial
policy server called OpenView/JP1 PolicyXpert [12].1

(1) Traffic Classifier (CL) Policy
A CL Policy classifies the packets and assigns a type
of VFL called a CID (Classifier Identifier). A CL
Policy is usually deployed at the edge or border inter-
faces of network nodes (i.e., interfaces that are con-
nected to points outside the Diffserv domain) and
applies to inbound traffic. An example of a CL policy
rule is

if (Source_IP_address is 192.168.1.1) {
CID = "EF_CID";

}.

(2) Traffic Conditioner (TC) Policy
A TC Policy meters, marks, and/or drops packets ab-
solutely (i.e., unconditionally). TC Policies, too, are
usually deployed to edge or border interfaces and ap-
ply to inbound traffic. A type of VFL called a TID
(Traffic Identifier) can be assigned. An example of a
TC policy rule that contains metering is

 if (Source_IP_address == "192.168.1.1") {
if (InformationRate <= 10 Mbps) {

// if the bandwidth exceeds 10 Mbps,
DSCP = 46; // then mark 46.

} else {
Absolute_drop;

// otherwise, absolutely drop the packet.
};

}.

(3) Queue Control (QC) Policy
A QC Policy queues and schedules, or drops packets
randomly (by using the WRED or a similar algorithm).
A QC Policy is usually deployed to core interfaces
(i.e., interfaces that are connected to other interfaces
within the Diffserv domain) and applies to outbound
traffic. A QC Policy rule can be regarded as a model
of a queue or scheduler; i.e., a traffic control object.
A type of VFL called a QID (Queue Set Identifier) can
also be assigned. An example of a QC policy rule is

 if (DSCP == "EF") {
Scheduling_algorithm = "B-PQ";

// bounded priority queuing
Priority = 6; // six means “high”
Shaping_rate = 20 Mbps;

 }.

1 OpenView and PolicyXpert are trademarks of Hewlett-
Packard Company. JP1 is a trademark of Hitachi, Ltd. Poli-
cyXpert Version 2.0 was jointly developed by Hewlett-Packard
and Hitachi.

CL TC QC

continue evaluation continue evaluation

CID

TID QID

Figure 5. The evaluation order of CL, TC and QC Policies

03/09/01

9

These policies can be combined to represent a com-
plex policy as will be discussed. However, it is important
to note that, if a policy is simple, it can be described sim-
ply; i.e., a simple Diffserv function can be represented by
a TC policy for each edge interface and a QC policy for
all the core interfaces. The coarse-grained building
blocks are, therefore, easier to use than the fine-grained
ones.

When the policy to be represented is more complex,
the order of policy evaluation is predefined as part of the
definition of these policies. The order of CL, TC and QC
Policies is predefined as outlined in Figure 5. This
means that a CL Policy can be followed by a TC Policy, a
TC Policy can be followed by a TC or QC Policy, and a
QC Policy can be followed by a QC Policy or no policy.
This figure also shows which type of VFL can be used
for connecting rules. Only DSCPs, i.e., real flow labels,
can be used for connecting TC and QC Policy rules.

There is nondeterminacy (i.e., there are alternatives) in
the execution order of TC and QC Policies. To resolve
this nondeterminacy, “continue evaluation” must be ex-
plicitly specified when a policy evaluation is repeated.
For example, the following rule in a QC Policy is com-
bined with another rule (which tests the QID “shape2”) in
the QC Policy.

if (DSCP == "AF11" || DSCP == "AF12" || DSCP ==
"AF13") {
Scheduling_algorithm = "A-BW";
Max_queue_size = 200 packets;
Committed_rate = 64 kbps;
QID = "shape2";
Continue evaluation;

}.
If no “continue evaluation” statement is specified, the
rule is not followed by another QC Policy rule.

4.3 Two cases of building-block use
Two cases of building-block
use, which were originally
described in our previous
paper [19], are explained in
this section. Although we
will use the previously dis-
cussed coarse-grained poli-
cies for the explanations,
the fine-grained policies
could also be used for the
same purpose.

4.3.1 Separation of sub-
scriber and service
policies

Both network services and
service subscribers, i.e., end
customers, can be managed

by using policies. Policies for service subscribers can be
separated from service policies by using CL and TC Poli-
cies as well as CIDs (shown in Figure 6).

In a Diffserv network, three service classes, i.e., gold,
silver, and best-effort classes, can be defined. The same
DSCP can be used for both gold and silver classes, but
the policing rates for them, which are specified by TC
Policy rules, can be different; e.g., gold traffic is policed
to 1 Mbps, but silver traffic is policed to 128 kbps. Then,
two different DSCPs are used, and three different CIDs,
"G", "S", and "B", are used for gold, silver, and best-
effort classes. Service properties can be defined by the
network administrator in a service policy, which is im-
plemented by using a TC Policy; i.e., each class of servi-
ces is specified by a TC Policy rule. Subscriber
properties can be defined by the network operators in
subscriber policies, which are implemented by using CL
Policies; i.e., each subscriber is specified by a CL Policy
rule. CIDs are used for mapping or aggregating sub-
scribers into service classes. The TC Policy can then be
deployed to all inbound edge interfaces of the Diffserv
network. Each CL Policy can be deployed to an edge
interface and contain rules connected to the service poli-
cy rules in the TC Policy by CIDs. In Figure 6, CL Poli-
cies 1, 2, and 3 (subscriber policies) are defined, and they
are deployed to three edge interfaces. There is only one
TC Policy (service policy), and it is deployed to the same
interfaces as the CL Policies.

When a subscriber is added or removed, the network
operator can modify only the relevant CL Policy and
need not modify the service policy. This separation of
subscriber and service policies clearly separates the task
of the network administrator from the task of the network
operator without complicating the structure of policies or
that of the system structure. Subscriber and service poli-
cies are separated by using VFLs, but the policies coop-
erate following uniform policy semantics. In this

gold rule

silver rule

best effort rule

...

TC PolicyCL Policy 1

rule for subscriber 1

rule for subscriber n

...

CL Policy 2
rule for subscriber 1’

rule for subscriber n’

... Diffserv network

CL Policy 3
rule for subscriber 1”

rule for subscriber n”

...

Subscriber
policies

Service
policy

Edge interfaces

CIDs

CIDs

CIDs

Figure 6. Separation of subscriber and service policies

03/09/01

10

example, the building
blocks enable the task-
oriented design of
policies, i.e., it sup-
ports the tracks of both
network administrators
and operators. This
suggests that we have
chances to design task-
oriented building
blocks by using VFLs
(or pipes), although we
cannot say this is al-
ways possible.

In addition, multiple
service classes that
share a DSCP can be
separated by using
CIDs. This means that
instead of using CL
Policies not only to
distinguish subscribers,
they can also be used
to distinguish service
classes that share a
DSCP. This makes
DSCP use flexible.

4.4 Hierarchical
shaper and
policer

In multi-service net-
works, hierarchical
schedulers and shapers
can be used for harmonizing various types of traffic. A
shaper limits the transmission rate of the traffic by de-
laying transmission, and a policer limits the information
rate by discarding exceeded packets. These functions can
be represented by using QIDs and a QC Policy. Each QC
Policy rule represents a simple queuing or scheduling
method. QC Policy rules can be combined by QIDs to
represent a complex queuing/scheduling method.

For example, a hierarchical shaper (Figure 7) limits
the information rate of summed traffic, in addition to
limiting the information rate of each traffic flow. In Fig-
ure 7, the rate of each traffic flow is limited to 64 kbps
and the rate of the summed traffic is limited to 10 Mbps.
This QC Policy consists of n + 1 rules. Rules Q1, …, Qn
receive input traffic and output traffic shaped at a maxi-
mum of 64 kbps by using a generic fair-queuing method
called aggregated-bandwidth fair-queuing (A-BW).
Here, the input traffic is assumed to have a QID value ""
(the initial value), the output traffic has the QID value
"Shape2", and “continue evaluation” is specified in each
of the rules Q1, …, Qn. A-BW can be mapped to an ap-

propriate scheduling (queuing) method implemented at
the given network node. Rule Sc inputs the aggregation
of the shaped traffic from Q1, …, Qn, and outputs traffic
at a maximum of 10 Mbps by using a bounded priority-
queuing (B-PQ) method.

Each rule Q1, …, Qn models a queue, and rule Sc
models an A-BW scheduler, which is followed by a B-PQ
scheduler that is not given explicitly. Other scheduling
methods, i.e., strict priority queuing (S-PQ) and per-flow
bandwidth fair queuing (P-BW), can also be specified in
a QC Policy rule.

A hierarchical policer can be represented in a similar
way to the shaper, but the details have been omitted here.
Hierarchical shapers and policers can be expressed by
using building blocks because these can specify their own
inputs and outputs and relationships clearly. These speci-
fications cannot be described by using conventional poli-
cies.

Note that, although hierarchical shaping, scheduling,
or a policing policy is complex, a simpler function, such
as a marking function or a non-hierarchical shaping or

SchAlg = “A-BW”
CommittedRate = 64 kbps

SchAlg = “A-BW”
CommittedRate = 64 kbps

SchAlg = “B-PQ”
Priority = “high”
ShapingRate = 10 Mbps

QC Policy

QID = “” QID = “Shape2”
Continue evaluation

Rule Q1

Rule Qn

Rule Sc
...

DSCP = “AFn”

DSCP = “AF1”

QID = “OutGoing”

S = { Q1: if (QID == "" && DSCP == "AF1") {
Scheduling_algorithm = "A-BW";
Committed_rate = 64 kbps;
QID = "Shape2";
Enqueue;

},

…,

Qn: if (QID == "" && DSCP == "AFn") {
Scheduling_algorithm = "A-BW";
Committed _rate = 64 kbps;
QID = "Shape2";
Enqueue;

},

Sc: if (QID == "Shape2") {
Scheduing_algorithm = "B-PQ";
Priority = "high";
Shaping_rate = 10 Mbps;
QID = "Outgoing";
Enqueue;

}
 }

Figure 7. A hierarchical shaper

03/09/01

11

policing function, can be represented by only a single
rule. This means that this building block architecture
makes it possible to describe simple policy simply, while
a complex policy can be represented by using the same
set of policies.

5. Transformation of Policies
To enforce a policy on network nodes, policies may have
to be transformed because the set of policies (compo-
nents) that the nodes can accept may be different from the
set that the policy server handles. In such cases, the poli-
cy server must translate higher-level (device-
independent) into lower-level (possibly device-
dependent) policies. This translation can be compared to
the compilation of programs written in languages such as
C++. For example, in network devices, functions such as
QoS or access control are usually configured by using
command-line interfaces (CLIs). Commands define con-
ditions and actions; i.e., such device functions are also
controlled by using policies that consist of device-level
policy rules. For example, in a Cisco router, conditions
can be defined by an access control list (ACL) and
referred to by an action command.

Although policy translation can be compared to pro-
gram compilation, it may be much more complicated.
That is, the functions of lower-level policies do not ne-
cessarily correspond to those of higher-level policies. A
higher-level policy may have to be transformed into two
or more lower-level policies, and two or more higher-
level policies may have to be transformed into one lower-
level policy. The former transformation is called a policy
division, and the latter transformation is called a policy
fusion. For example, a higher-level policy contains two
(cooperating) functions, but no lower-level policy may
contain both functions. In this case, the policy must be
divided into two; otherwise, it cannot be deployed to de-
vices. Such methods of policy division and fusion are
described by Kanada [18]. This paper also revealed the
problem (discussed in Section 1) where the duplication of
classifiers causes serious semantic problems that makes
policy transformation difficult or impossible. In addition,
Kanada and Yazaki [20] showed that the complexity of
and restrictions on policy division could be reduced by
software and hardware integration in routers.

6. Related Work
Ao, Moffett, Lupu, Sloman, and others analyzed hierar-
chical policies and proposed solutions. Moffett and Slo-
man [25] explored the refinement of general higher-level
policies into a number of more specific lower-level poli-
cies. The translation methods described in the previous
section can be regarded as specific methods for this re-
finement. Lupu and Sloman [23] specified the parallel-

ism and synchronization between the activities within
policies by using Petri Nets and other means. These
means are similar to the one described in Section 3.2.2.
Ao et al. [2] proposed a hierarchical inter-policy relation-
ship that was called superior/subordinate. A policy and
its components in the present paper can be regarded as
policies with superior/subordinate relationships.

The charter [28] of the NGOSS™ (New Generation
Operation Support Systems) Policy-Based Management
Working Group of the TeleManagement Forum listed a
hierarchical policy framework, managing policies using
meta-policies and other working items that related to the
cooperation of policies.

Diffserv policies have been used as examples in the
present paper. Low-level Diffserv policies can be repre-
sented by Diffserv PIB [6] or the QoS Device Informa-
tion Model [27]. The concept of a data path is used in
Diffserv PIB to connect components. This architecture is
close to the pipe-connection architecture because a data
path connects two specific components and is, thus,
similar to a pipe. However, if a component has two or
more input or output ports, a data path cannot distinguish
them. Thus, in the QoS Device Information Model, the
concept of preamble markers, which distinguish multiple
ports, is used. A preamble marker is similar to a VFL,
so, this model can be regarded as a mixture of the pipe-
and label-connection architectures.

7. Summary and Conclusion
We developed two building-block architectures for poli-
cies: the pipe-connection and label-connection architec-
tures, and we discussed the latter in detail. To describe
the relationships between building blocks in this archi-
tecture, it is necessary to specify both the dataflow and
control flow between the building blocks. A piece of
data transferred between the building blocks is called a
tag, including VFLs. The control flow can be classified
and specified by four control structures: concatenation,
parallel application, selection, and repetition.

We designed fine-grained and coarse-grained building
blocks as well as dataflow and control flow specification
methods for Diffserv, and implemented the coarse-
grained ones in a policy server. The case studies qualita-
tively revieled that building-block-based policies have
the following advantages.

• Expressibility: Complex functions, such as hierar-
chical shapers or policers, can be specified by com-
bining primitive policy rules.

• Uniform semantics: All the policies follow uniform
forward- or backward-chaining rule-based semantics.

• Simplicity: Coarse-grained policies can be designed
to represent a simple policy in a simple form, while a

03/09/01

12

complex policy can be represented by using the same
set of policies.

• Less constraints: Network services can be specified
without strong constraints on the packet format. In
Diffserv, multiple services that use the same DSCP
can be easily defined.

• Task-oriented design: Building-block policies can
be designed for specific management tasks; sub-
scriber and service policies can be clearly separated
in Diffserv policies.

The case studies suggest that these advantages can also
be obtained in applications other than Diffserv. How-
ever, we need more experience to confirm this.

To deploy policies to network nodes, building-block
policies may require complex transformations, i.e., policy
division and fusion, which may be restrictive. However,
the complexity and restrictions can be reduced by inte-
grating software and hardware.

References
1. Allen, J. R., Kennedy, K., Porterfield, C., and War-

ren, J., “Conversion of Control Dependence to
Data Dependence”, 10th ACM Symposium on
Principles of Programming Languages, (POPL
83), pp. 177–189, 1983.

2. Ao, X., Minsky, N., and Nguyen, T. D., “A Hierar-
chical Policy Specification Language, and En-
forcement Mechanism, for Governing Digital
Enterprises”, 3rd IEEE International Workshop on
Policies for Distributed Systems and Networks
(Policy 2002), pp. 38–49, June 2002.

3. Baker, F., Chan, K., and Smith, A., “Management
Information Base for the Differentiated Services
Architecture”, RFC 3289, IETF, May 2002.

4. Berger, L., ed., “Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Functional De-
scription”, RFC 3471, IETF, January 2003.

5. Carlson, M., Weiss, W., Blake, S., Wang, Z.,
Black, D., and Davies, E., “An Architecture for
Differentiated Services”, RFC 2475, IETF, De-
cember 1998.

6. Chan, K. H., Durham, D., Gai, S., Herzog, S.,
McCloghrie, K., Reichmeyer, F., Seligson, J.,
Smith, A., and Yavatkar, R., “COPS Usage for
Policy Provisioning (COPS-PR)”, RFC 3084,
IETF, March 2001.

7. Chan, K., Sahita, R., Hahn, S., and McCloghrie,
K., “Differentiated Services Quality of Service
Policy Information Base”, RFC 3317, March 2003,
IETF.

8. Clark, K. and Gregory, S., “PARLOG: Parallel
Programming in Logic”, ACM Trans. on Pro-

gramming Languages and Systems, Vol. 8, No. 1,
pp. 1–49, 1986.

9. Durham, D. (ed.), Boyle, J., Cohen, R., Herzog, S.,
Rajan, R., and Sastry, A., “The COPS (Common
Open Policy Service) Protocol”, RFC 2741, IETF,
January 2000.

10. Forgy, C. L., “OPS5 User’s Manual”, Technical
Report CMU-CS-81-135, Carnegie Mellon Univer-
sity, Dept. of Computer Science, 1981.

11. Herzog, S . (ed.), Boyle, J., Cohen, R., Durham,
D., Rajan, R., and Sastry, A., “COPS usage for
RSVP”, RFC 2749, IETF, January 2000.

12. “HP OpenView PolicyXpert 2.0 — Users Guide”,
Edition 1, Hewlett-Packard, October 2000.

13. ITU-T, “Information Technology — Open Systems
Interconnection — Systems Management: Man-
agement Domain and Management Policy Man-
agement Function”, ITU-T Recommendation
X.749 (ISO/IEC JTC1/SC21 10355), 1996.

14. Jacobson, V., Nichols, K., and Poduri, K., “An
Expedited Forwarding PHB”, RFC 2598, IETF,
June 1999.

15. Kanada, Y., “A Representation of Network Node
QoS Control Policies Using Rule-based Building
Blocks”, International Workshop on Quality of
Service 2000 (IWQoS 2000), pp. 161–163, June
2000.

16. Kanada, Y., “Two Rule-based Building-block Ar-
chitectures for Policy-based Network Control”, 2nd
International Working Conference on Active Net-
works (IWAN 2000), pp. 195–210, October 2000.

17. Kanada, Y., “Taxonomy and Description of Policy
Combination Methods”, 1st International Work-
shop on Policies for Distributed Systems and Net-
works (Policy 2001), Lecture Notes in Computer
Science, No. 1995, pp. 171–184, Springer, January
2001.

18. Kanada, Y., “Policy Division and Fusion: Exam-
ples and A Method – or, Multiple Classifiers Con-
sidered Harmful –”, 7th IFIP/IEEE International
Symposium on Integrated Network Management
(IM 2001), pp. 545–560, IEEE, May 2001.

19. Kanada, Y. and O’Keefe, B. J., “Diffserv Policies
and Their Combinations in a Policy Server Called
PolixyXpert” (Extended Abstract), 5th Asia-Pacific
Network Operations and Management Symposium
(APNOMS 2001), p. 501, 2001, a full-paper ver-
sion is available from: Kanada, Y., and O’Keefe,
B. J., “Combination of Diffserv Policies in Open-
View/JP1 PolicyXpert”, Technical Report of
IEICE, NS2001-246, IN2001-202, Institute of
Electronics, Information and Communication En-
gineers (IEICE), March 2002.

20. Kanada, Y. and Yazaki, T., “A Method of Soft-
ware-Hardware Integration of Diffserv Policies for

03/09/01

13

Gigabit Routers”, 16th International Workshop on
Communications Quality & Reliability (CQR
2002), pp. 12–16, 2002.

21. Kuck, D. J., Kuhn, R. H., Padua, D. H., Leasure,
B., and Wolfe, M., “Dependence Graphs and Com-
piler Optimizations”, 8th ACM Symposium on
Principles of Programming Languages (POPL 81),
pp. 207–218, 1981.

22. Lupu, E. and Sloman, M., “Conflicts in Policy-
based Distributed Systems”, IEEE Trans. on Soft-
ware Engineering, Vol. 25, No. 6, pp. 852–869,
1999.

23. McCarthy, D. R. and Dayal, U., “The Architecture
of An Active Data Base Management System”,
ACM SIGMOD International Conference on Man-
agement of Data, pp. 215–224, 1989.

24. Moffett, J. and Sloman, M., “Policy Hierarchies for
Distributed Systems Management”, IEEE Journal
on Selected Areas in Communications (Special Is-
sue on Network Management), pp. 1404–1414,
December 1993.

25. Moffett, J. D. and Sloman, M. S., “Policy Conflict
Analysis in Distributed System Management”,
Journal of Organisational Computing, Vol. 4, No.
1, pp. 1–22, Ablex Publishing, 1994.

26. Moore, B., Ellesson, E., Strassner, J., and Wester-
inen, A., “Policy Framework Core Information
Model — Version 1 Specification”, RFC 3060,
IETF, February 2001.

27. Moore, B., Durham, D., Strassner, J., Westerinen,
A., and Weiss, W., “Information Model for De-
scribing Network Device QoS Datapath Mecha-
nisms”, work in progress by IETF.

28. NGOSS Policy-Based Management Working
Group, “Technical Team Work Item — Terms of
Reference”, TeleManagement Forum Project
Charter, http://www.tmforum.org/browse.asp?-
catID=1003&sNode=1003&-
Exp=Y&linkID=24698&docID=1285 .

29. Nichols, K., Blake, S., Baker, F., and Black, D.,
“Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers”,
RFC 2474, IETF, December 1998.

30. Shapiro, E., “Concurrent Prolog: A Progress Re-
port”, IEEE Computer, August 1986, pp. 44–59,
1986.

31. Snir, Y., Ramberg, Y., Strassner, J., Cohen, R., and
Moore, B., “Policy QoS Information Model”, work
in progress by IETF.

32. Ueda, K., “Guarded Horn Clauses”, Logic Pro-
gramming Conference ’85, pp. 225–2236, 1985.
Also in ICOT Technical Report, TR-103, Institute
for New Generation Computer Technology, 1985,
and in New Generation Computing, Vol. 5, pp. 29–
44, 1987.

