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Abstract – One key requirement for achieving network 
virtualization is resource isolation among slices (virtual 
networks), that is, to avoid interferences between slices of 
resources. This paper proposes two methods, per-slice shaping 
and per-link policing for network-resource isolation (NRI) in 
terms of bandwidth and delay. These methods use traffic 
shaping and traffic policing, which are widely-used traffic 
control methods for guaranteeing QoS. Per-slice shaping 
utilizes weighted fair queuing (WFQ) usually applied to a fine-
grained flow such as a flow from a specific server application 
to a user. Since the WFQ for fine-grained flows requires many 
queues, it may not scale to a large number of slices with a large 
number of virtual nodes. Considering that the purpose of NRI 
is not thoroughly guaranteeing QoS but avoiding interferences 
between slices, we believe per-slice shaping suffices our 
objective. In contrast, per-link policing uses traffic policing per 
virtual link. It requires less resource and achieves less strict 
isolation between hundreds of slices. Our results show that 
both methods perform NRI well but the performance of the 
former is better in terms of delay. Accordingly, per-slice 
shaping is effective for delay-sensitive services while per-link 
policing may be sufficiently used for the other types of services.  

I. INTRODUCTION  
In network virtualization, it is important to avoid resource 
interference, e.g., concerning communication bandwidth and 
delay, so that a single slice may not disrupt the whole 
infrastructure. To avoid this type of interference, a method 
for network-resource isolation (NRI) must be developed. 
Two types of traffic-control functions usually used for QoS 
guarantee, i.e., traffic shaping and traffic policing, can be 
used for NRI. Traffic shaping is suitable for services more 
sensitive to packet loss, but it is relatively expensive 
because a queue must be allocated to each virtual link (per 
link) to guarantee QoS. This requirement may limit the 
number of slices that can be allocated in the physical 
network. However, because the purpose of resource 
isolation is to avoid interference between slices (but not to 
guarantee QoS thoroughly), per-slice queue allocation, 
instead of per-link allocation, is sufficient. In contrast, 
traffic policing is a low-cost method for avoiding 
interference concerning bandwidth among slices that shares 
a queue, and it is suited for services more sensitive to delay 
but less sensitive to packet loss.  

To implement NRI at a reasonable cost using these 
functions, two methods are proposed in this study: the per-
slice shaping method that allocates a weighted fair queuing 
(WFQ) [Par 93] based queue to each slice and the per-link 
policing (per-virtual-link policing) method that allocates a 
WFQ based queue to each slice class (slice collection). Our 
final goal is to perform NRI among hundreds of slices with 
1-kbps to 10-Gbps traffic using these methods.  

II. VIRTUALIZATION PLATFORM, VNODE, AND SLICE 
When many users and systems share a limited amount of re-
sources on computers or networks, virtualization technology 
creates the illusion that each user or system owns resources 
of their own. Concerning networks, WANs are virtualized 
by using VPNs. Nowadays, networks in data centers are 
virtualized using VLANs while servers are virtualized using 
VMs. In new-generation network research projects such as 
PlanetLab [Tur 07] or GENI [GEN 09], it is necessary to 
develop virtualization technology that makes it possible to 
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build network environments where slices are isolated from 
one another so that they may develop new generation 
network protocols without disrupting the other slices.  

Network virtualization is realized through slices and the 
virtualization platform that manages slices. A project called 
the Virtualization Node Project (VNP) has developed 
virtualization-platform architecture (see Figure 1) and a 
high-performance fully functional virtualization testbed 
[Nak 10b]. The major component in this architecture is 
VNode (virtualization node), which forwards packets on the 
platform. Each packet on the platform contains a virtualized 
packet on a slice. VNodes are connected by tunnels using a 
protocol such as GRE [Far 00]. Therefore, a slice with free 
topology can be created. Each VNode consists of the 
following three components.  
• Programmer is a component that processes packets on the 

slices. Slice developers can program programmers.  
• Redirector is a component that can forward or route 

packets on the virtualization platform and forward 
(redirect) packets from another VNode to a programmer 
or forward packets from a programmer to another VNode. 

• VNode Manager is a software component that manages 
the VNode according to instructions from the Domain 
Controller (DC), which manages the platform domain. 
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Figure 1.  Physical structure of virtualization platform 
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Figure 2. Policing and shaping in a VNode 

Figure 2 shows a more detailed internal structure of a 
VNode. There exists a pair of packet encoder and decoder 
between the redirector and the programmer. The decoder 
converts the VNode-external data format to the internal 
format and the encoder converts vice versa. Traffic that 
comes to the ingress interfaces (to the left) follows the 
curved line and passes through the shaper, the decoder, the 
programmer, the policer, the shaper again, and the encoder, 
and is outputted through the egress interfaces (on the right).   

In the model developed by VNP, a slice consists of the 
two types of components [Nak 10a].  
• Node Sliver represents computational resources that exist 

in a VNode (in a programmer). It is used for node control 
or protocol processing with an arbitrary packet format. It 
is generated by slicing physical computational resources. 

• Link Sliver represents resources of a virtual link that 
connects two node slivers. It is generated by slicing 
physical network resources such as bandwidth. 
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III. RESOURCE ISOLATION AND SPECIFICATION METHOD 
A. Resource Isolation 
The user of a slice should be able to use the slice without 
being affected by the behavior of other slices created on the 
same virtualization platform. For this purpose, methods for 
isolation must be developed, and the slice must be isolated 
from other slices. Isolation can be classified as the following 
two types. 
• Resource isolation is a function that enables a slice to use 

the required resources to provide the expected 
performance even when congestion occurs on the 
physical network or on other slices. 

• Security isolation is a function that avoids disruptions and 
intrusions against a given slice caused by adversaries.  

This paper focues on resource isolation.   
The virtualization platform has three types of resources: 

network, computational, and storage. Three types of 
resource isolation can thus be classified:  
• Network-resource isolation (NRI) 
• Computational-resource isolation (CRI) 
• Storage-resource isolation (SRI) 
Although a programmer must isolate slices of traffic which 
share a network interface card (NIC) or processor to 
guarantee NRI, redirectors play the most important role 
because they measure and control traffic between VNodes.  

Traffic control for NRI is required in every VNode 
because every node sliver may generate excessive traffic. 
NRI can be implemented by using QoS functions of the 
VNodes. It is assumed that each VNode has bandwidth-
control functions, especially shaping and policing. However, 
the priority-based control function may also be used for 
NRI. For example, if a VNode contains a router, NRI may 
be implemented by using the DiffServ function of the router. 

B. Specification of Network-resource Isolation 
It is necessary to specify bandwidth and or the maximum 
burst size in defining a link-sliver with NRI, as is specified 
in virtual leased lines. Several examples of link-sliver 
definitions, which are parts of slice definitions, are shown 
below. The first example (in Figure 3a) is a definition 
without a bandwidth specification, that is, a best-effort link-
sliver. The link sliver has two virtual ports, i.e., end points: 
port0 and port1. A link sliver without resource specification 
is similar to a best-effort path, thus, is subject to disruptions 
caused by the other slices and non-virtualized traffic. The 
second example (in Figure 3b) is a definition with a simple 
bandwidth specification. The bandwidth is 30 Mbps, and the 
maximum burst size is 10 kB. In the third example (in 
Figure 3c), bandwidth and burst-size parameters are 
specified for each direction. The bandwidth from port0 to 
port1 is 30 Mbps, and that of reverse direction is 20 Mbps. 
<linkSliver type="link" subtype="GRE" name="LinkSliver1"> 
  <vports><vport name="port0" /><vport name="port1" /> 
  </vports></linkSliver> 

(a) Example without a bandwidth specification 
<linkSliver type="link" subtype="GRE" name="LinkSliver1"> 
  <vports><vport name="port0" /><vport name="port1" /> 
  </vports> 
  <resources> 
    <resource key="bandwidth" value="30M" /> 
    <resource key="burstSize" value="10k" /></resources> 
</linkSliver> 

(b) Example with a bandwidth specification 
<linkSliver type="link" subtype="GRE" name="LinkSliver2"> 
  <vports><vport name="port0" /><vport name="port1" /> 
  </vports> 
  <resources from="port0"> 
    <resource key="bandwidth" value="30M" /></resources> 
  <resources from="port1"> 
    <resource key="bandwidth" value="20M" /></resources> 
</linkSliver> 

(c) Example with direction-dependent bandwidth specification 
Figure 3. Link-sliver definition examples 

IV. METHODS OF NETWORK-RESOURCE ISOLATION 
A. Two Traffic-Control Functions ― Shaping and Policing 
Two major traffic control functions which are usually used 
for guaranteeing QoS can be used for NRI. Shaping queues 
packets and limits and schedules the egress traffic by a 
certain scheduling algorithm such as the leaky-bucket 
algorithm [Par 93]. If the queue is filled, the packet output 
may be delayed, and packets may be dropped. Policing 
measures network traffic, usually by using the token-bucket 
algorithm [Par 93] without accumulating packets, and that 
drops packets when the bandwidth or the burst size exceeds 
a predefined limit. Both shaping and policing can be applied 
to link slivers, slices, or classes of slices. The cost of 
policing is much lower than shaping.  

Shaping may perform better than policing in NRI; 
namely, it can avoid interference in both bandwidth and in 
delay. However, it is expensive in high-end nodes because a 
specialized hardware is required. Therefore, a method for 
NRI using fewer queues and less-complicated scheduler 
should be developed. In a shaping-based method, a queue 
must be allocated to each link sliver to guarantee the 
bandwidth, and this allocation causes high packet-
scheduling overhead. In addition, it may be impossible to 
allocate a queue to each link sliver because there may be 
insufficient number of queues in the hardware interface. As 
a result, the scalability may be sacrificed; namely, the 
number of slices that can be allocated in the platform may 
be limited. It is therefore preferable to allocate less queues.  

Two methods can be used to reduce the number of 
queues and the complexity of the scheduler. One is per-slice 
shaping method that uses shaping for isolating slices but 
allocates a queue to each slice. The other is per-link policing 
method that uses policing for isolating slices.  

B. Per-slice shaping 
Per-slice shaping, or shaping-based isolation, isolates slices 
by queuing traffic per slice, instead of queuing it per link, to 
reduce shaping cost. Policing is not necessary for NRI in 
this method; packets are not intentionally dropped then. Per-
slice shaping can be specified by the following expression.  

<resource key="performanceIsolation"  
    value="shaping" /> 

As explained in the previous subsection, shaping per link 
is required to guarantee QoS. However, because the purpose 
of resource isolation is to avoid interference between slices, 
but not to guarantee QoS thoroughly, we believe per-slice 
queue allocation, instead of per-link allocation, suffices our 
objective. It is not necessarily required to avoid interference 
between flows within a slice. For this reason, a queue is 
allocated to each slice. Although per-slice shaping cannot 
avoid interference between link slivers of a slice, the flows 
of different slices can be isolated almost completely by this 
method. In our prototype, both input packets and output 
packets of programmers are queued in a per-slice WFQ.  

By using this method, the bandwidth used for each slice 
is guaranteed, so interference between slices is avoided. 
Because each slice uses a separate queue, not only 
interference of bandwidth but also correlation of delay 
between slices can mostly be avoided. Therefore, this 
method is suited for strict real-time services. The number of 
link slivers connected to a node sliver is considered to be 
typically three to five, so the number of queues can be 
reduced by 70 to 80%.  

C. Per-link Policing 
The per-link policing method, or the policing-based isola-
tion method, isolates slices by policing traffic per link sliver. 
Traffic is shaped per slice class or per link-sliver class in 
this method; namely, two or more slices using per-link 
policing can share a queue to reduce shaping cost compared 
to per-slice shaping. The slice classes or link-sliver classes 
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can be defined according to QoS or any other purpose. This 
isolation may be less strict than that of per-slice shaping. 
However, per-link bandwidth can be assured in this method.  

Per-link policing can be specified by the following 
expression in the link-sliver definition. 

<resource key="performanceIsolation"  
    value="policing" /> 

In per-link policing, an ingress network interface with a 
traffic-policing function is used. Each interface has packet 
filters. If a filter is applied to a link sliver, it can control the 
bandwidth per link sliver. 

In this method, policing can be used for guaranteeing 
bandwidth of link slivers that share a shaper. If the total 
bandwidth is guaranteed by shaping, the bandwidth is 
properly divided to the link-slivers by using policing and 
each bandwidth is guaranteed. Hundreds or thousands of 
slices may share a queue in per-link policing. It is therefore 
reasonable to implement NRI using per-link policing. 
Packets are, however, easily dropped by policing, so it is 
usually not preferable to use policing everywhere.  

Per-link policing is more scalable than per-link shaping; 
that is, there may be thousands or more slices even when a 
filter is created for each link sliver. Policing can avoid 
bandwidth interference, although policing cannot avoid 
interference or correlation concerning delay completely. 
Therefore, this method is not suited for strict real-time 
services, but is sufficient for most other types of services, 
i.e., non-real-time services such as most TCP-based services 
or weak real-time services. 

D. Combination of Per-slice Shaping and Per-link Policing 
Per-slice shaping and per-link policing may be combined; 
slices can be isolated by using both shaping per slice and 
policing per link-sliver. The method can be called the per-
slice shaping method with (per-link) policing. This isolation 
is as strict as that of per-slice shaping, and per-link 
bandwidth can also be assured. However, packets may be 
dropped and the shaping cost is higher than per-link 
policing. This method can be specified by the following 
expression. 

<resource key="performanceIsolation"  
    value="shapingAndPolicing" /> 

E. Management of Network-resource Isolation 
The DC accepts a slice definition from the slice developer, 
and it sends link-sliver-creation requests to the VNodes. The 
DC manages the total bandwidth of each VNode and rejects 
the slice definition if it contains network-resource requests 
that cannot be satisfied.  

V. IMPLEMENTATION 
Three methods for NRI, i.e., per-link policing, per-slice 
shaping without policing, and per-slice shaping with 
policing (i.e., the combined method), have been imple-
mented in our VNode prototype. The structure of the VNode 
and the redirector and the methods for allocating shaping 
queues are described in this section. 

A. Structure of Redirector 
The redirector, namely, 
the packet-forwarding 
part of a VNode, plays 
the most important role 
of the NRI in the 
VNode. It consists of 
three components: redi-
rector body (RB), redi-
rector manager (RM), 
and service module 
cards (SMCs) (see Figure 4). A layer-3 (L3) switch is used 
for the RB. An SMC is an add-on card, with a network 

processor, installed in the redirector. The RM manages the 
redirector according to a management request from the 
VNode manager through an XML-RPC based API. The RM 
configures and manages RB and SMC through command-
line interfaces (CLIs). Link slivers are implemented using 
GRE tunnels that allow any IP and non-IP protocols. An 
SMC is used for packet encoding and decoding. The GRE 
encoder and decoder on the SMC can convert packets at 
almost 10 Gbps if the packet size is large enough. 

B. Allocation of Shaping Queues 
Because the SMC may cause bottleneck, packets are queued 
and scheduled just before the SMC (i.e., packet 
encoder/decoder as shown in Figure 2). The scheduler is a 
part of 10-Gbit Ethernet interface between the RB and the 
SMC. The interface has four WFQs per port as well as 
queues with high priority and queues with low priority. 
They are allocated in the following way (see Figure 5).  
• Per-slice shaping queues: Three WFQs are used for link 

slivers with per-slice shaping with/without policing. The 
number of per-slice shaping slices is at most three. 

• Per-class shaping queue: There is only one link-sliver 
class for per-class-shaping (i.e., per-link-policing) in this 
implementation. Therefore, one WFQ is used for link 
slivers with per-link policing.  

• Best-effort queue: One queue with lower priority is used 
for best-effort link-slivers. The number of best-effort 
slices is not limited. 
Because best-effort traffic has lower priority than isolated 

traffic, it may cause starvation; namely, no bandwidth may 
be allocated to best-effort traffic. To avoid starvation, 
isolated traffic must always be policed in this implementa-
tion; that is, per-slice shaping without policing must be 
inhibited. In this implementation, only three slices with per-
slice shaping can be created, but more slices with per-link 
policing can be created as described in Section IV E.  
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Figure 5. Shaping queues and three types of link slivers 

VI. EVALUATION 
In this section, we show the evaluation result of the round-
trip delay, jitter, and packet-drop ratio of four types of slow-
path link slivers, i.e., per-slice shaping with policing and 
without policing, per-link policing, and best-effort. We 
conduct measurements on a simple network of two VNodes 
with slow-path node slivers (i.e., Linux virtual machines).1  

Table 1 lists the measurement results for round-trip 
delay, jitter, and packet-drop ratio when the bandwidth of 
the foreground traffic is 90 Mbps except the congestion-less 
case (the bottom line). Both the averages and standard 
deviations are shown. It is clear that both packet-drop 
(bandwidth) and delay interferences are mostly suppressed; 
there are only small differences between the cases except 
the no-isolation case. The delay is slightly larger in the case 
of the per-link policing (1.60) than in the case of the other 
two methods and the congestion-less case (1.31). This is 

                                                           
1 All the node slivers in a VNode are allocated to the same PC 
server in the programmer, thus, nodes slivers are sharing the same 
1-Gbps interface. To keep the traffic acceptable to the node slivers, 
the total traffic in a VNode is shaped to 900 Mbps by the shaper 
just before the SMC.  
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probably because the queue is shared by two flows and the 
average queue length is larger. However, there are no other 
significant differences between these isolation methods.  

The performance parameters were also measured for 
different bandwidths, but there were no significant 
differences between them, except packet-drop ratio shown 
in Figure 6a. The packet-drop ratio rapidly increases as the 
bandwidth approaches 100 Mbps, i.e., the specified limit, 
for the link slivers with per-link policing and with per-slice 
shaping with policing (which show almost no difference). 
However, a link sliver with per-slice shaping without 
policing can take bandwidth up to 100 Mbps or more 
because it can preempt bandwidth of the best-effort slice. 

Table 1. NRI performance of 100-Mbps link-sliver  
(actual traffic bandwidth = 90 Mbps) 

Isolation type 
Delay (mS) Jitter (mS) Drop ratio

Average Std dev Average Std dev Average Std dev

Per-link policing 1.60 0.12 0.10 0.01 0 0 
Per-slice shaping w/o policing 1.30 0.08 0.11 0.02 0 0
Per-slice shaping w policing 1.33 0.10 0.10 0.01 0 0 

No isolation 12.08 4.28 0.12 0.01 0.41 0.05
(Congestion-less)* 1.31 0.15 0.12 0.02 0 0

*The bandwidths of both the foreground and background traffic are much lower and 
the isolation types do not cause almost any differences in this case. 
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(a) 100-Mbps slow-path link sliver (b) 4.55-Gbps fast-path link sliver 

Figure 6. Packet-drop measurement results 

We have also measured a foreground slice with higher-
bandwidth (4.55 Gbps) link slivers and a fast-path node 
sliver (using a network processor) with two background 
slices. The packet size is 1350 B. To keep the traffic 
acceptable to the node sliver, the total traffic is shaped to 
4.0 Gbps by the shaper. The result in Figure 6b shows there 
is no significant increase in packet drop (< 4×10-5) both in 
per-slice shaping and per-link policing when  the bandwidth 
of the foreground traffic is 4.0 Gbps or less. The result 
below 3.7 Gbps is omitted from the figure because the 
shaping bandwidth (4 Gbps) is not filled. 

These results show that the per-slice shaping 
with/without policing is effective for delay-sensitive 
services while per-link policing may be sufficiently used for 
the other types of services. Per-slice shaping without 
policing performs better in terms of packet drop. However, 
practically, policing is required to avoid starving best-effort 
slices at least in this implementation. Therefore, per-slice 
shaping with (per-link or per-slice) policing is suitable for 
delay-sensitive services. 

VII. RELATED WORK 
Conventional resource-management methods and QoS-
guarantee methods can be applied to solving the resource-
isolation problem in virtual networks. Only a few studies 
focus on resource isolation. In “spawning networks” in 
Genesis [Cam 99], individual queues are created for each 
virtual network even when a child virtual network is 
spawned from a parent virtual network and each child 
operates in isolation from other virtual networks. However, 
the implementation detail is not described in their paper. 
Bilal and Feamster [Bil 10] describes a hardware imple-

mentation concerning NRI. However, they used only one 
queue for all the slices. They used virtualized-network 
specific methods to implement a VN by using multiple 
queues. Soltesz et al. [Sol 07] discusses isolation (i.e., fault 
isolation and resource isolation) using a virtual mechanism. 

VIII. CONCLUSION 
Two methods for NRI for virtualization networks are 
proposed in this paper: per-slice shaping and per-link 
policing. The per-slice shaping enables NRI with 70–80% 
less queues compared to the per-link shaping. The per-link 
policing enables less strict isolation between hundreds of 
slices using only one queue. These methods have enabled 
virtualization platforms scalable both in number of slices 
and in number of programmers or node slivers. The 
evaluations show that both methods perform NRI well but 
the performance of the former is better in terms of delay. 
Accordingly, per-slice shaping with/without policing is 
effective for delay-sensitive services while per-link policing 
may be sufficiently used for the other types of services.  

Future work includes addressing the following two 
issues. First, in certain situations, redirector and programmer 
in a VNode must cooperate to guarantee network-resource 
isolation. Therefore, a method of this cooperation must be 
developed. Second, the number of slices with per-slice 
shaping should be increased from three to hundreds. 
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