
1

Network-resource Isolation for Virtualization Nodes*
Yasusi Kanada

Central Research Laboratory, Hitachi, Ltd.
Yasusi.Kanada.yq@hitachi.com

Kei Shiraishi
Network Solution Division, Hitachi, Ltd.

shiraishi_kei@itg.hitachi.co.jp

Akihiro Nakao
The University of Tokyo
nakao@iii.u-tokyo.ac.jp

Abstract – One key requirement for achieving network
virtualization is resource isolation among slices (virtual
networks), that is, to avoid interferences between slices of
resources. This paper proposes two methods, per-slice shaping
and per-link policing for network-resource isolation (NRI) in
terms of bandwidth and delay. These methods use traffic
shaping and traffic policing, which are widely-used traffic
control methods for guaranteeing QoS. Per-slice shaping
utilizes weighted fair queuing (WFQ) usually applied to a fine-
grained flow such as a flow from a specific server application
to a user. Since the WFQ for fine-grained flows requires many
queues, it may not scale to a large number of slices with a large
number of virtual nodes. Considering that the purpose of NRI
is not thoroughly guaranteeing QoS but avoiding interferences
between slices, we believe per-slice shaping suffices our
objective. In contrast, per-link policing uses traffic policing per
virtual link. It requires less resource and achieves less strict
isolation between hundreds of slices. Our results show that
both methods perform NRI well but the performance of the
former is better in terms of delay. Accordingly, per-slice
shaping is effective for delay-sensitive services while per-link
policing may be sufficiently used for the other types of services.

I. INTRODUCTION
In network virtualization, it is important to avoid resource
interference, e.g., concerning communication bandwidth and
delay, so that a single slice may not disrupt the whole
infrastructure. To avoid this type of interference, a method
for network-resource isolation (NRI) must be developed.
Two types of traffic-control functions usually used for QoS
guarantee, i.e., traffic shaping and traffic policing, can be
used for NRI. Traffic shaping is suitable for services more
sensitive to packet loss, but it is relatively expensive
because a queue must be allocated to each virtual link (per
link) to guarantee QoS. This requirement may limit the
number of slices that can be allocated in the physical
network. However, because the purpose of resource
isolation is to avoid interference between slices (but not to
guarantee QoS thoroughly), per-slice queue allocation,
instead of per-link allocation, is sufficient. In contrast,
traffic policing is a low-cost method for avoiding
interference concerning bandwidth among slices that shares
a queue, and it is suited for services more sensitive to delay
but less sensitive to packet loss.

To implement NRI at a reasonable cost using these
functions, two methods are proposed in this study: the per-
slice shaping method that allocates a weighted fair queuing
(WFQ) [Par 93] based queue to each slice and the per-link
policing (per-virtual-link policing) method that allocates a
WFQ based queue to each slice class (slice collection). Our
final goal is to perform NRI among hundreds of slices with
1-kbps to 10-Gbps traffic using these methods.

II. VIRTUALIZATION PLATFORM, VNODE, AND SLICE
When many users and systems share a limited amount of re-
sources on computers or networks, virtualization technology
creates the illusion that each user or system owns resources
of their own. Concerning networks, WANs are virtualized
by using VPNs. Nowadays, networks in data centers are
virtualized using VLANs while servers are virtualized using
VMs. In new-generation network research projects such as
PlanetLab [Tur 07] or GENI [GEN 09], it is necessary to
develop virtualization technology that makes it possible to

 * This paper is an extended version of a poster paper [Kan 12].

build network environments where slices are isolated from
one another so that they may develop new generation
network protocols without disrupting the other slices.

Network virtualization is realized through slices and the
virtualization platform that manages slices. A project called
the Virtualization Node Project (VNP) has developed
virtualization-platform architecture (see Figure 1) and a
high-performance fully functional virtualization testbed
[Nak 10b]. The major component in this architecture is
VNode (virtualization node), which forwards packets on the
platform. Each packet on the platform contains a virtualized
packet on a slice. VNodes are connected by tunnels using a
protocol such as GRE [Far 00]. Therefore, a slice with free
topology can be created. Each VNode consists of the
following three components.
• Programmer is a component that processes packets on the

slices. Slice developers can program programmers.
• Redirector is a component that can forward or route

packets on the virtualization platform and forward
(redirect) packets from another VNode to a programmer
or forward packets from a programmer to another VNode.

• VNode Manager is a software component that manages
the VNode according to instructions from the Domain
Controller (DC), which manages the platform domain.

Gate-
way

Gate-
way

User’s
PC/VM

User’s
PC/VM

DC

VNode

VNode VNode

IP
Router VNode

DC: Domain Controller
AGW: Access GateWay
VNode: Virtualization Node
VNM: VNode Manager
R: Redirector
P: Programmer

VNode
VNM

P R

Figure 1. Physical structure of virtualization platform

Redirector

VNode

High-end
Ethernet switch

Packet
encoder/
decoder

Shaper

VNode Manager

Ingress
interfaces

Egress
interfaces

Management port

Policer

a

b

c

Programmer

Figure 2. Policing and shaping in a VNode

Figure 2 shows a more detailed internal structure of a
VNode. There exists a pair of packet encoder and decoder
between the redirector and the programmer. The decoder
converts the VNode-external data format to the internal
format and the encoder converts vice versa. Traffic that
comes to the ingress interfaces (to the left) follows the
curved line and passes through the shaper, the decoder, the
programmer, the policer, the shaper again, and the encoder,
and is outputted through the egress interfaces (on the right).

In the model developed by VNP, a slice consists of the
two types of components [Nak 10a].
• Node Sliver represents computational resources that exist

in a VNode (in a programmer). It is used for node control
or protocol processing with an arbitrary packet format. It
is generated by slicing physical computational resources.

• Link Sliver represents resources of a virtual link that
connects two node slivers. It is generated by slicing
physical network resources such as bandwidth.

2

III. RESOURCE ISOLATION AND SPECIFICATION METHOD
A. Resource Isolation
The user of a slice should be able to use the slice without
being affected by the behavior of other slices created on the
same virtualization platform. For this purpose, methods for
isolation must be developed, and the slice must be isolated
from other slices. Isolation can be classified as the following
two types.
• Resource isolation is a function that enables a slice to use

the required resources to provide the expected
performance even when congestion occurs on the
physical network or on other slices.

• Security isolation is a function that avoids disruptions and
intrusions against a given slice caused by adversaries.

This paper focues on resource isolation.
The virtualization platform has three types of resources:

network, computational, and storage. Three types of
resource isolation can thus be classified:
• Network-resource isolation (NRI)
• Computational-resource isolation (CRI)
• Storage-resource isolation (SRI)
Although a programmer must isolate slices of traffic which
share a network interface card (NIC) or processor to
guarantee NRI, redirectors play the most important role
because they measure and control traffic between VNodes.

Traffic control for NRI is required in every VNode
because every node sliver may generate excessive traffic.
NRI can be implemented by using QoS functions of the
VNodes. It is assumed that each VNode has bandwidth-
control functions, especially shaping and policing. However,
the priority-based control function may also be used for
NRI. For example, if a VNode contains a router, NRI may
be implemented by using the DiffServ function of the router.

B. Specification of Network-resource Isolation
It is necessary to specify bandwidth and or the maximum
burst size in defining a link-sliver with NRI, as is specified
in virtual leased lines. Several examples of link-sliver
definitions, which are parts of slice definitions, are shown
below. The first example (in Figure 3a) is a definition
without a bandwidth specification, that is, a best-effort link-
sliver. The link sliver has two virtual ports, i.e., end points:
port0 and port1. A link sliver without resource specification
is similar to a best-effort path, thus, is subject to disruptions
caused by the other slices and non-virtualized traffic. The
second example (in Figure 3b) is a definition with a simple
bandwidth specification. The bandwidth is 30 Mbps, and the
maximum burst size is 10 kB. In the third example (in
Figure 3c), bandwidth and burst-size parameters are
specified for each direction. The bandwidth from port0 to
port1 is 30 Mbps, and that of reverse direction is 20 Mbps.
<linkSliver type="link" subtype="GRE" name="LinkSliver1">
 <vports><vport name="port0" /><vport name="port1" />
 </vports></linkSliver>

(a) Example without a bandwidth specification
<linkSliver type="link" subtype="GRE" name="LinkSliver1">
 <vports><vport name="port0" /><vport name="port1" />
 </vports>
 <resources>
 <resource key="bandwidth" value="30M" />
 <resource key="burstSize" value="10k" /></resources>
</linkSliver>

(b) Example with a bandwidth specification
<linkSliver type="link" subtype="GRE" name="LinkSliver2">
 <vports><vport name="port0" /><vport name="port1" />
 </vports>
 <resources from="port0">
 <resource key="bandwidth" value="30M" /></resources>
 <resources from="port1">
 <resource key="bandwidth" value="20M" /></resources>
</linkSliver>

(c) Example with direction-dependent bandwidth specification
Figure 3. Link-sliver definition examples

IV. METHODS OF NETWORK-RESOURCE ISOLATION
A. Two Traffic-Control Functions ― Shaping and Policing
Two major traffic control functions which are usually used
for guaranteeing QoS can be used for NRI. Shaping queues
packets and limits and schedules the egress traffic by a
certain scheduling algorithm such as the leaky-bucket
algorithm [Par 93]. If the queue is filled, the packet output
may be delayed, and packets may be dropped. Policing
measures network traffic, usually by using the token-bucket
algorithm [Par 93] without accumulating packets, and that
drops packets when the bandwidth or the burst size exceeds
a predefined limit. Both shaping and policing can be applied
to link slivers, slices, or classes of slices. The cost of
policing is much lower than shaping.

Shaping may perform better than policing in NRI;
namely, it can avoid interference in both bandwidth and in
delay. However, it is expensive in high-end nodes because a
specialized hardware is required. Therefore, a method for
NRI using fewer queues and less-complicated scheduler
should be developed. In a shaping-based method, a queue
must be allocated to each link sliver to guarantee the
bandwidth, and this allocation causes high packet-
scheduling overhead. In addition, it may be impossible to
allocate a queue to each link sliver because there may be
insufficient number of queues in the hardware interface. As
a result, the scalability may be sacrificed; namely, the
number of slices that can be allocated in the platform may
be limited. It is therefore preferable to allocate less queues.

Two methods can be used to reduce the number of
queues and the complexity of the scheduler. One is per-slice
shaping method that uses shaping for isolating slices but
allocates a queue to each slice. The other is per-link policing
method that uses policing for isolating slices.

B. Per-slice shaping
Per-slice shaping, or shaping-based isolation, isolates slices
by queuing traffic per slice, instead of queuing it per link, to
reduce shaping cost. Policing is not necessary for NRI in
this method; packets are not intentionally dropped then. Per-
slice shaping can be specified by the following expression.

<resource key="performanceIsolation"
 value="shaping" />

As explained in the previous subsection, shaping per link
is required to guarantee QoS. However, because the purpose
of resource isolation is to avoid interference between slices,
but not to guarantee QoS thoroughly, we believe per-slice
queue allocation, instead of per-link allocation, suffices our
objective. It is not necessarily required to avoid interference
between flows within a slice. For this reason, a queue is
allocated to each slice. Although per-slice shaping cannot
avoid interference between link slivers of a slice, the flows
of different slices can be isolated almost completely by this
method. In our prototype, both input packets and output
packets of programmers are queued in a per-slice WFQ.

By using this method, the bandwidth used for each slice
is guaranteed, so interference between slices is avoided.
Because each slice uses a separate queue, not only
interference of bandwidth but also correlation of delay
between slices can mostly be avoided. Therefore, this
method is suited for strict real-time services. The number of
link slivers connected to a node sliver is considered to be
typically three to five, so the number of queues can be
reduced by 70 to 80%.

C. Per-link Policing
The per-link policing method, or the policing-based isola-
tion method, isolates slices by policing traffic per link sliver.
Traffic is shaped per slice class or per link-sliver class in
this method; namely, two or more slices using per-link
policing can share a queue to reduce shaping cost compared
to per-slice shaping. The slice classes or link-sliver classes

3

can be defined according to QoS or any other purpose. This
isolation may be less strict than that of per-slice shaping.
However, per-link bandwidth can be assured in this method.

Per-link policing can be specified by the following
expression in the link-sliver definition.

<resource key="performanceIsolation"
 value="policing" />

In per-link policing, an ingress network interface with a
traffic-policing function is used. Each interface has packet
filters. If a filter is applied to a link sliver, it can control the
bandwidth per link sliver.

In this method, policing can be used for guaranteeing
bandwidth of link slivers that share a shaper. If the total
bandwidth is guaranteed by shaping, the bandwidth is
properly divided to the link-slivers by using policing and
each bandwidth is guaranteed. Hundreds or thousands of
slices may share a queue in per-link policing. It is therefore
reasonable to implement NRI using per-link policing.
Packets are, however, easily dropped by policing, so it is
usually not preferable to use policing everywhere.

Per-link policing is more scalable than per-link shaping;
that is, there may be thousands or more slices even when a
filter is created for each link sliver. Policing can avoid
bandwidth interference, although policing cannot avoid
interference or correlation concerning delay completely.
Therefore, this method is not suited for strict real-time
services, but is sufficient for most other types of services,
i.e., non-real-time services such as most TCP-based services
or weak real-time services.

D. Combination of Per-slice Shaping and Per-link Policing
Per-slice shaping and per-link policing may be combined;
slices can be isolated by using both shaping per slice and
policing per link-sliver. The method can be called the per-
slice shaping method with (per-link) policing. This isolation
is as strict as that of per-slice shaping, and per-link
bandwidth can also be assured. However, packets may be
dropped and the shaping cost is higher than per-link
policing. This method can be specified by the following
expression.

<resource key="performanceIsolation"
 value="shapingAndPolicing" />

E. Management of Network-resource Isolation
The DC accepts a slice definition from the slice developer,
and it sends link-sliver-creation requests to the VNodes. The
DC manages the total bandwidth of each VNode and rejects
the slice definition if it contains network-resource requests
that cannot be satisfied.

V. IMPLEMENTATION
Three methods for NRI, i.e., per-link policing, per-slice
shaping without policing, and per-slice shaping with
policing (i.e., the combined method), have been imple-
mented in our VNode prototype. The structure of the VNode
and the redirector and the methods for allocating shaping
queues are described in this section.

A. Structure of Redirector
The redirector, namely,
the packet-forwarding
part of a VNode, plays
the most important role
of the NRI in the
VNode. It consists of
three components: redi-
rector body (RB), redi-
rector manager (RM),
and service module
cards (SMCs) (see Figure 4). A layer-3 (L3) switch is used
for the RB. An SMC is an add-on card, with a network

processor, installed in the redirector. The RM manages the
redirector according to a management request from the
VNode manager through an XML-RPC based API. The RM
configures and manages RB and SMC through command-
line interfaces (CLIs). Link slivers are implemented using
GRE tunnels that allow any IP and non-IP protocols. An
SMC is used for packet encoding and decoding. The GRE
encoder and decoder on the SMC can convert packets at
almost 10 Gbps if the packet size is large enough.

B. Allocation of Shaping Queues
Because the SMC may cause bottleneck, packets are queued
and scheduled just before the SMC (i.e., packet
encoder/decoder as shown in Figure 2). The scheduler is a
part of 10-Gbit Ethernet interface between the RB and the
SMC. The interface has four WFQs per port as well as
queues with high priority and queues with low priority.
They are allocated in the following way (see Figure 5).
• Per-slice shaping queues: Three WFQs are used for link

slivers with per-slice shaping with/without policing. The
number of per-slice shaping slices is at most three.

• Per-class shaping queue: There is only one link-sliver
class for per-class-shaping (i.e., per-link-policing) in this
implementation. Therefore, one WFQ is used for link
slivers with per-link policing.

• Best-effort queue: One queue with lower priority is used
for best-effort link-slivers. The number of best-effort
slices is not limited.
Because best-effort traffic has lower priority than isolated

traffic, it may cause starvation; namely, no bandwidth may
be allocated to best-effort traffic. To avoid starvation,
isolated traffic must always be policed in this implementa-
tion; that is, per-slice shaping without policing must be
inhibited. In this implementation, only three slices with per-
slice shaping can be created, but more slices with per-link
policing can be created as described in Section IV E.

Slice-with-shaping

WFQ
(bandwidth-

allocated
queue)

Nonprioritized
queue

Slice-with-shaping

Per-slice
shaping

Per-class
shaping

(with policing)

Best-effort

Slice-with-shaping

Slice-w/o-shaping

Slice-w/o-shaping

Slice-w/o-shaping

Classes

Figure 5. Shaping queues and three types of link slivers

VI. EVALUATION
In this section, we show the evaluation result of the round-
trip delay, jitter, and packet-drop ratio of four types of slow-
path link slivers, i.e., per-slice shaping with policing and
without policing, per-link policing, and best-effort. We
conduct measurements on a simple network of two VNodes
with slow-path node slivers (i.e., Linux virtual machines).1

Table 1 lists the measurement results for round-trip
delay, jitter, and packet-drop ratio when the bandwidth of
the foreground traffic is 90 Mbps except the congestion-less
case (the bottom line). Both the averages and standard
deviations are shown. It is clear that both packet-drop
(bandwidth) and delay interferences are mostly suppressed;
there are only small differences between the cases except
the no-isolation case. The delay is slightly larger in the case
of the per-link policing (1.60) than in the case of the other
two methods and the congestion-less case (1.31). This is

1 All the node slivers in a VNode are allocated to the same PC
server in the programmer, thus, nodes slivers are sharing the same
1-Gbps interface. To keep the traffic acceptable to the node slivers,
the total traffic in a VNode is shaped to 900 Mbps by the shaper
just before the SMC.

Redirector Body (RB) Service Module Card
(SMC)

Redirector Manager (RM)

Control Plane (C-Plane)

Data Plane (D-Plane)

Redirector

Internal Data Plane

Figure 4. Structure of redirector

4

probably because the queue is shared by two flows and the
average queue length is larger. However, there are no other
significant differences between these isolation methods.

The performance parameters were also measured for
different bandwidths, but there were no significant
differences between them, except packet-drop ratio shown
in Figure 6a. The packet-drop ratio rapidly increases as the
bandwidth approaches 100 Mbps, i.e., the specified limit,
for the link slivers with per-link policing and with per-slice
shaping with policing (which show almost no difference).
However, a link sliver with per-slice shaping without
policing can take bandwidth up to 100 Mbps or more
because it can preempt bandwidth of the best-effort slice.

Table 1. NRI performance of 100-Mbps link-sliver
(actual traffic bandwidth = 90 Mbps)

Isolation type
Delay (mS) Jitter (mS) Drop ratio

Average Std dev Average Std dev Average Std dev

Per-link policing 1.60 0.12 0.10 0.01 0 0
Per-slice shaping w/o policing 1.30 0.08 0.11 0.02 0 0
Per-slice shaping w policing 1.33 0.10 0.10 0.01 0 0

No isolation 12.08 4.28 0.12 0.01 0.41 0.05
(Congestion-less)* 1.31 0.15 0.12 0.02 0 0

*The bandwidths of both the foreground and background traffic are much lower and
the isolation types do not cause almost any differences in this case.

0.0

0.1

0.2

0.3

0.4

0.5

0 50 100

P
ac

ke
t d

ro
p

ra
tio

Bandwidth (Mbps)

Per-link policing
Per-slice shaping w/o policing
Per-slice shaping with policing
Best-effort

0.0

0.1

0.2

0.3

0.4

0.5

3600 3800 4000 4200 4400

P
ac

ke
t d

ro
p

ra
tio

Bandwidth (Mbps)

Per-link policing
Per-slice shaping w/o policing
Per-slice shaping with policing
Best-effort

(a) 100-Mbps slow-path link sliver (b) 4.55-Gbps fast-path link sliver

Figure 6. Packet-drop measurement results

We have also measured a foreground slice with higher-
bandwidth (4.55 Gbps) link slivers and a fast-path node
sliver (using a network processor) with two background
slices. The packet size is 1350 B. To keep the traffic
acceptable to the node sliver, the total traffic is shaped to
4.0 Gbps by the shaper. The result in Figure 6b shows there
is no significant increase in packet drop (< 4×10-5) both in
per-slice shaping and per-link policing when the bandwidth
of the foreground traffic is 4.0 Gbps or less. The result
below 3.7 Gbps is omitted from the figure because the
shaping bandwidth (4 Gbps) is not filled.

These results show that the per-slice shaping
with/without policing is effective for delay-sensitive
services while per-link policing may be sufficiently used for
the other types of services. Per-slice shaping without
policing performs better in terms of packet drop. However,
practically, policing is required to avoid starving best-effort
slices at least in this implementation. Therefore, per-slice
shaping with (per-link or per-slice) policing is suitable for
delay-sensitive services.

VII. RELATED WORK
Conventional resource-management methods and QoS-
guarantee methods can be applied to solving the resource-
isolation problem in virtual networks. Only a few studies
focus on resource isolation. In “spawning networks” in
Genesis [Cam 99], individual queues are created for each
virtual network even when a child virtual network is
spawned from a parent virtual network and each child
operates in isolation from other virtual networks. However,
the implementation detail is not described in their paper.
Bilal and Feamster [Bil 10] describes a hardware imple-

mentation concerning NRI. However, they used only one
queue for all the slices. They used virtualized-network
specific methods to implement a VN by using multiple
queues. Soltesz et al. [Sol 07] discusses isolation (i.e., fault
isolation and resource isolation) using a virtual mechanism.

VIII. CONCLUSION
Two methods for NRI for virtualization networks are
proposed in this paper: per-slice shaping and per-link
policing. The per-slice shaping enables NRI with 70–80%
less queues compared to the per-link shaping. The per-link
policing enables less strict isolation between hundreds of
slices using only one queue. These methods have enabled
virtualization platforms scalable both in number of slices
and in number of programmers or node slivers. The
evaluations show that both methods perform NRI well but
the performance of the former is better in terms of delay.
Accordingly, per-slice shaping with/without policing is
effective for delay-sensitive services while per-link policing
may be sufficiently used for the other types of services.

Future work includes addressing the following two
issues. First, in certain situations, redirector and programmer
in a VNode must cooperate to guarantee network-resource
isolation. Therefore, a method of this cooperation must be
developed. Second, the number of slices with per-slice
shaping should be increased from three to hundreds.

ACKNOWLEDGMENTS
We thank Atsushi Takahara and Noriyuki Takahashi from
NTT for designing and implementing NRI management
functions in the Domain Controller and VNode Manager.
We thank Takeo Hayashi and Akihiro Motoki from NEC for
discussing on the design and for their technical support on
the measurements of NRI for VNodes. We also thank
Ken’ichi Abiru from Fujitsu Laboratories, Makoto Kitani
from ALAXALA Networks, Yasushi Kasugai from Hitachi,
and other members of the VNP for their help and comments
on the design of NRI. Part of research results described in
this paper is an outcome of the Advanced Network
Virtualization Platform (Project A) funded by National
Institute of Information and Communications Technology.

REFERENCES
[Bil 10] Anwer, B. and Feamster, N., “Building a Fast, Virtualized Data

Plane with Programmable Hardware”, Computer Communication
Review, Vol. 40, pp. 75–82, January 2010. Also in ACM SIGCOMM
VISA’09, August 2009.

[Cam 99] Campbell, A. T., Vicente, J., and Villela, D. A., “Virtuosity:
Performing Virtual Network Resource Management”, 7th Int’l
Workshop on Quality of Service (IWQoS’99), pp. 65–76, 1999.

[Far 00] Farinacci, D., Li, T., Hanks, S.,. Meyer, D., and Traina, P.,
“Generic Routing Encapsulation (GRE)”, RFC 2784, IETF, March
2000.

[GEN 09] The GENI Project, “Lifecycle of a GENI Experiment”, GENI-
SE-SY-TS-UC-LC-01.2, April 2009, http://groups.geni.net/geni/-
attachment/wiki/ExperimentLifecycleDocument/ExperimentLifeCycle-
v01.2.pdf?format=raw .

[Kan 12] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-resource
Isolation for Virtualization Nodes”, COMSNETS 2012, January 2012.

[Nak 10a] Nakao, A., “Network Virtualization as Foundation for Enabling
New Network Architectures and Applications, IEICE Trans. Commun.,
Vol. E93-B, No. 3, pp. 454–457, March 2010.

[Nak 10b] Nakao, A., “Virtual Node Project ― Virtualization Technology
for Building New-Generation Networks”, NICT News, No. 393, pp. 1–6,
Jun 2010.

[Par 93] Parekh, A. K. and Gallager, R. G., “A Generalized Processor
Sharing Approach to Flow Control in Integrated Services Networks: the
Single-node Case”, IEEE/ACM Transactions on Networking, vol. 1,
June 1993.

[Sol 07] Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., and
Peterson, P., “Container-based Operating System Virtualization: A
Scalable, High-performance Alternative to Hypervisors”, 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems
(EuroSys’07), Vol. 41, No. 3, pp. 275–287, June 2007.

[Tur 07] Turner, J., Crowley, P., Dehart, J., Freestone, A., Heller, B.,
Kuhms, F., Kumar, S., Lockwood, J., Lu, J.,Wilson, M., Wiseman, C.,
and Zar, D., “Supercharging PlanetLab ― High Performance, Multi-
Application, Overlay Network Platform”, ACM SIGCOMM Computer
Communication Review, Vol. 37, No. 4, pp. 85–96, October 2007.

