Network-resource Isolation for Virtualization Nodes

Yasusi Kanada, Hitachi, Ltd. Kei Shiraishi, Hitachi, Ltd. Akihiro Nakao, University of Tokyo

Outline: Why NRI and how?

▶ We developed a network-virtualization architecture and platform.

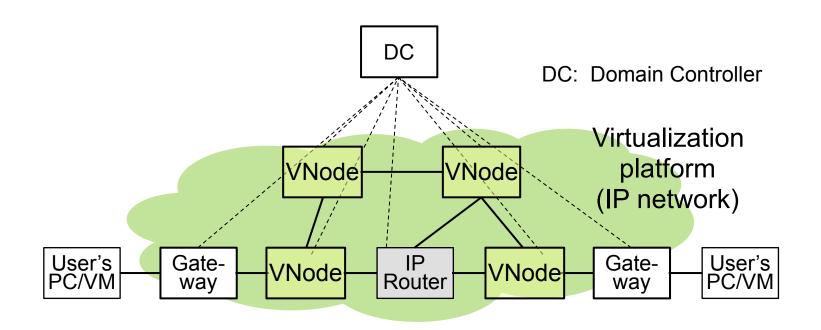
Slice

Slice 2

Slice 3

VNode

Physical network


VNode-

VNode

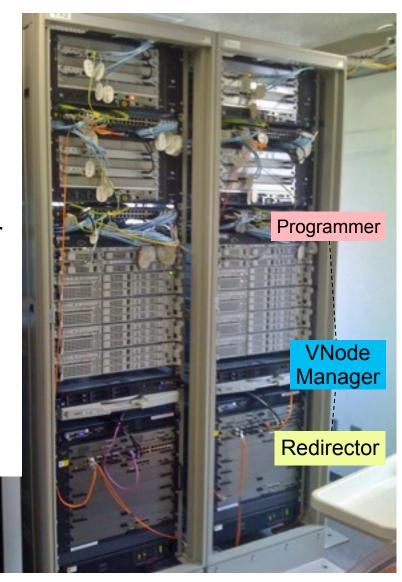
- ◆ In this platform, multiple slices (i.e., virtual networks) can be created on one physical network called a virtualization platform).
- Network-resource isolation (NRI) between slices is necessary for network virtualization.
 - ◆ Because resource interference (concerning communication bandwidth, delay, etc.) between slices must be avoided.
- ▶ We propose three methods of NRI based on shaping and policing (QoS mechanisms).
 - Per-slice shaping (PSS)
 - ◆ Per-link policing (PLP)
 - Combined method (PSS with PLP)

VNode

- VNode (virtualization nodes) is a component of the network virtualization platform.
 - VNode is a physical node.
 - VNode forwards packets on the platform, which contain a virtualized packet on a slice (i.e., overlay approach).
 - ◆ VNodes are connected by tunnels using a protocol such as GRE.

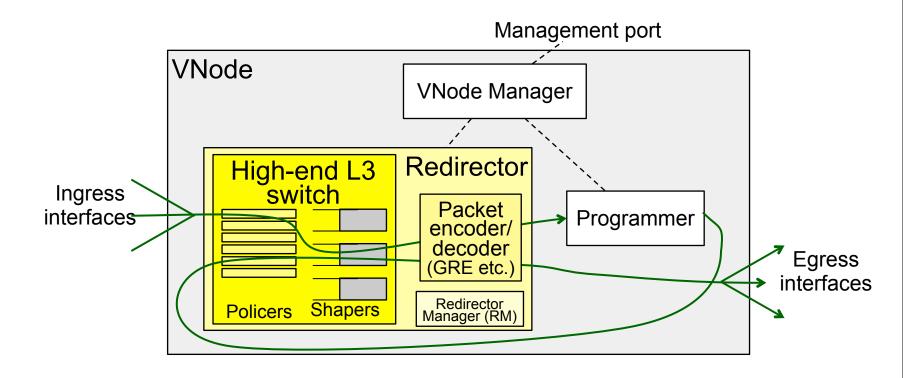
Components of VNode

▶ Programmer


 is a programmable component that processes packets on the slices.

Redirector

- forwards (redirects) packets from another VNode to a programmer and forwards packets from a programmer to another VNode.
- is a component that can forward or route packets on the platform.


► VNode Manager

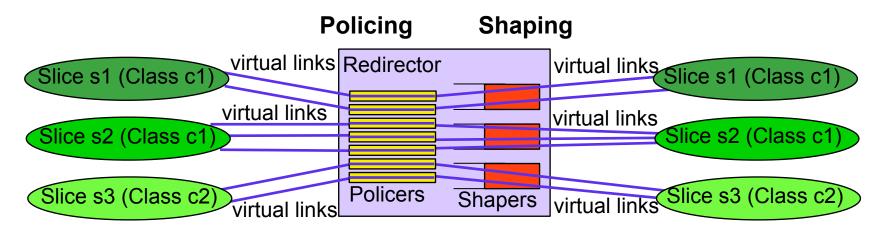
 is a software component that manages the VNode.

Internal Structure of Redirector in VNode

- ➤ The redirector contains a high-end switch (or router) (and a packet encoder/decoder, such as a GRE encoder/decoder).
- ► This switch has policers and shapers that can be used for implementing NRI.

Specification of NRI

- ► To isolate a slice from other slices, bandwidth (and burst size) is specified in virtual links in the slice definition.
- **►** Example of virtual link specification:

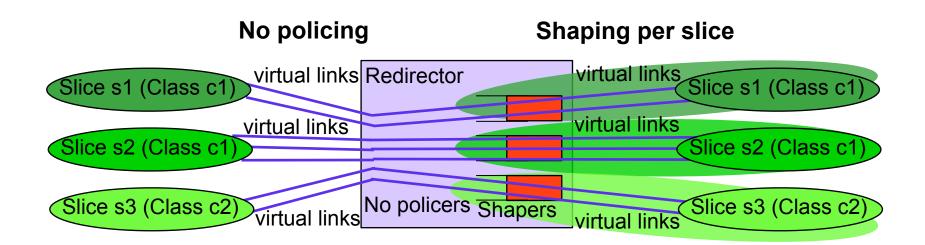

Traffic control functions used for NRI

► Shaping

- queues packets, and limits and schedules the egress traffic.
- delays the packet, and drops it when the queue is filled.
- ♦ is more expensive and less scalable than policing (i.e., requires more memory and scheduling overhead).

▶ Policing

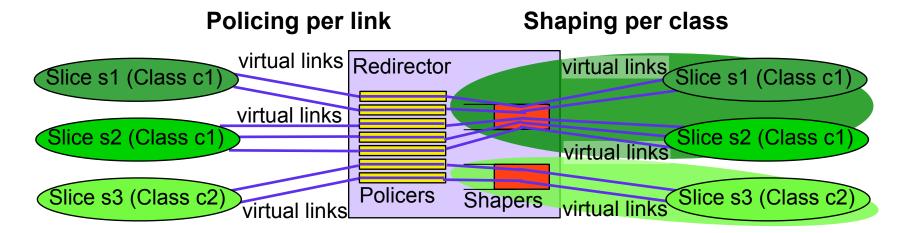
- measures network traffic without accumulating packets and drops packets when the bandwidth (or the burst size) exceeds a limit.
- ◆ can be used for guaranteeing bandwidth of virtual links that shares a queue (i.e., divides bandwidth reserved for a queue to slices).
- ♦ is less expensive and more scalable than shaping.


Three Methods for NRI

- ► Per-slice shaping (PSS)
- ► Per-link policing (PLP)
- **▶** Combined method (PSS with PLP)

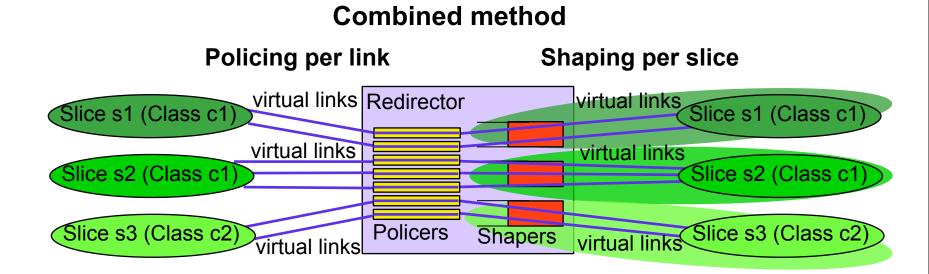
Three Methods for NRI (cont'd)

► PSS (Per-slice shaping)


- ◆ isolates slices strictly by shaping traffic per-slice instead of per-link (i.e., per virtual-link).
 - Although per-link shaping is required for guaranteeing QoS.
- is sufficient for NRI but does not guarantee per-link bandwidth.
- does not use policing (does not intentionally drop packets).
- ♦ is more scalable than per-link shaping (because it uses 80–90% less queues).

Three Methods for NRI (cont'd)

► PLP (Per-link policing)


- isolates slices (and virtual links) statistically (in a less-strict way) by policing traffic per-link; that is, guarantees per-link bandwidth by measuring and dropping packets link-by-link.
- uses shaping per slice-class (that is, slices share a queue).
- is more scalable than per-slice shaping (is applicable to hundreds of slices).
- may be influenced more by other slices than PSS (may be worse in delay and jitter).

Three Methods for NRI (cont'd)

▶ Combined method (PSS with PLP)

- isolates slices by shaping traffic per slice and policing traffic per-link.
- is as strict as PSS in isolation from other slices.
- statistically guarantees per-link bandwidth (QoS).

Implementation and Evaluation

- **▶** We implemented the three methods for NRI.
- Evaluation of slow-path and fast-path virtual nodes
 - Method: Three slices are used: one for foreground traffic to be measured and two for background cross traffic.
 - Result: Slow-path (Linux VM) virtual nodes

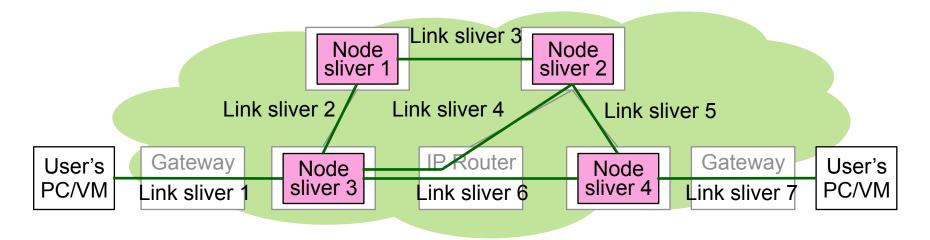
Isolation type	Delay (mS)		Jitter (mS)		Drop ratio	
	Average	Std dev	Average	Std dev	Average	Std dev
PLP	1.60	0.12	0.10	0.01	0	0
PSS	1.30	0.08	0.11	0.02	0	0
Combined	1.33	0.10	0.10	0.01	0	0
No isolation	12.08	4.28	0.12	0.01	0.41	0.05
(Congestion-less)	1.31	0.15	0.12	0.02	0	0

Conditions: Link sliver bandwidth = 100 Mbps, traffic = 90 Mbps. Cross traffic fills the link.

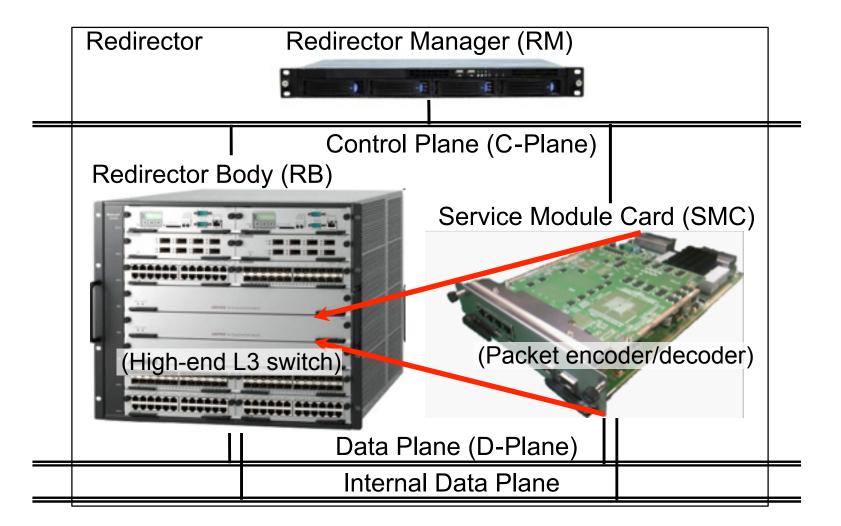
- Result: Fast-path virtual node (using a network processor)
 - Slices have been isolated when the foreground traffic is 4.0 Gbps or less. (The physical link bandwidth is 10 Gbps.)

Conclusion

- ► Three methods for NRI for virtualization networks are proposed in this paper.
 - ◆ PSS enables NRI with 80–90% less queues compared to the perlink shaping.
 - ◆ PLP enables less strict isolation between tens or hundreds of slices using only one queue.
 - A combination of PSS and PLP.
- ► Evaluations of these methods show that PSS performs slightly better in terms of delay and packet-drop ratio.
- ► Applications of PSS and PLP:
 - PSS and the combined method are effective for delay-sensitive services.
 - PLP may be sufficiently used for the other types of services.

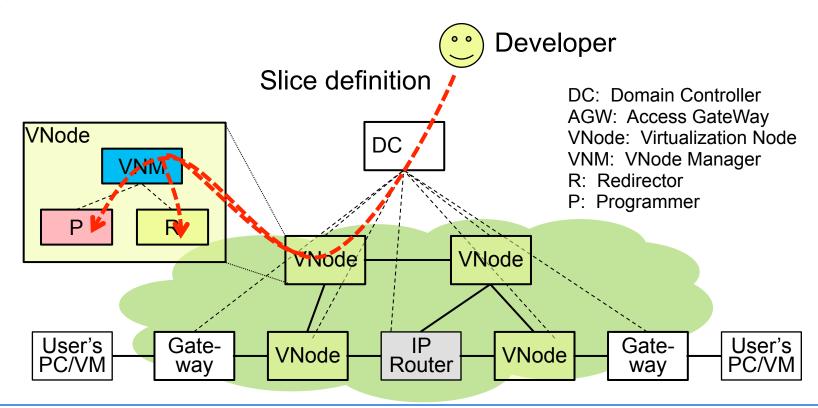

Suppl: Two Types of Slice Components in VNP

► Node Sliver (or virtual node)


- represents computational resources that exist in a VNode (in a programmer).
- is used for node control or protocol processing with an arbitrary packet format.
- is generated by slicing physical computational resources.

► Link Sliver (or virtual link)

- represents resources of a virtual link that connects two node slivers.
- is generated by slicing physical network resources such as bandwidth.



Suppl: Components of Redirector

Suppl: Slice definition

- A (human) slice developer writes a slice definition in XML.
- ► The slice definition is sent to DC, distributed to each VNode Manager, and sent to the programmer and the redirector.

