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Abstract: To realize internet-protocol-based QoS-assured networks, using differentiated services un-
der policy-based networking is a promising approach. A QoS policy server must work in multi-vendor
environment. To use standard protocol, such as COPS or SNMP, between the policy server and routers
is not sufficient, but also to define and to standardize high-level syntax and semantics, i.e., a language,
is required for interoperability. This paper describes the outline of a rule-based language for this pur-
pose. Policy rules can be defined in the policy server and can be deployed to routers or router proxies
using this language through an appropriate protocol such as COPS, SNMP, or IIOP. The language
consists of several types of rules, i.e., matching, policing (or metering), marking, discarding, and
scheduling types, and linkage labels that connects rules. A MIB and/or PIB that simulates the language
is also explained in this paper. The language will be implemented in near future.

1. Introduction
The Internet will be used much more often for mis-
sion-critical communications, and multimedia services
will be much more important in the Internet in near
future. Thus, guarantee or assurance of QoS (quality
of service) will be essential for Internet-based services
for commercial service providers and enterprises.

In the IETF (Internet Engineering Task Force),
many working groups concern Internet QoS. Espe-
cially, the Integrated Services (IntServ) WG is work-
ing on per-flow QoS guarantee [Wro 97][She 97], and
the differentiated services (DiffServ) WG is working
on class-based QoS assurance [Ber 99a]. “Per-flow”
means that each flow of packets between a source end-
point, and a destination end-point is treated individu-
ally. “Class-based” means that flows are classified
into service classes, and the flows in a same service
class are treated in the same way. Per-flow control
makes more accurate QoS control possible, but it re-
quires much more resources in network nodes, such as
routers. Because the resources are limited, class-
based approach, i.e., DiffServ, seems to be more
practical on the Internet.

To control QoS conditions in a network domain in
which DiffServ take place, a policy server is used.
The policy server configures routers in the domain by
deploying policy rules that classify packets and assign
QoS conditions to packets. There are several alterna-
tives for the interface between a policy server and
routers. SNMP [Cas 99][Har 99] or COPS [Boy 99]
can be used as the protocol between them. APIs
(application programming interfaces) can be specified
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for both policy-server side and router side. If CORBA
is used for defining the APIs, IIOP [OMG 98] may be
used for the protocol.

However, none of these alternatives themselves
define the high-level syntax nor semantics of the pol-
icy rules, and the high-layer communication between a
policy server and routers. The syntax and semantics
of policy rules must be defined clearly, because a
policy rule should be handled as whole and many
grammatical constraints are embedded in a policy
rule. Some constraints are required by the policy
server or the operator, and others are required by
routers. Because syntax and semantics are language
issues, this means that a (programming) language must
be defined. Because policies are represented by if-
then rules, we think a rule-based language, such as
used in developing expert systems, is appropriate for
this purpose.

There are two design goals on defining rule-based
language for DiffServ functions. The first goal is in-
teroperability. A network domain may contain routers
of many vendors, and the QoS functions of routers are
mostly vendor-specific, even if they support stan-
dardized interface such as SNMP or COPS. Thus, a
vendor-independent language should be defined and
used in the interface for the sake of interoperability.

The second goal is modularity. There are two types
of modularity: syntagmatic modularity and paradig-
matic modularity. The words, syntagmatic and para-
digmatic, are borrowed from Linguistics. Syntagmatic
modularity means that a language expression, a policy
rule in our case, can be divided into components and
the components can be freely composed. The inter-
face between a policy server and routers should be
syntagmatically modular because the policy server
should support most of functions of routers and so the
interface should be flexible. If important but vendor-
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specific functions are not available through the inter-
face, the policy server may be left unused or may be
skipped because the required configuration can be
done only by manual operation. Paradigmatic
modularity means that an element of a set of syntactic
entities that can be used in a specific part of the lan-
guage expression can be added, removed, or modified
without affecting other entities. Paradigmatic modu-
larity is also important, but it is out of scope of this
paper. So, it will not be explained more here.

To achieve interoperability and syntagmatic modu-
larity, we have developed a representation of policy
rules using building block rules and linkage labels
(called virtual flow labels in [Kan 99]). A policy rule
is a collection of building block rules connected by
linkage labels. In this paper, a model of a DiffServ-
ready network is described in Section 2, and a model
of DiffServ-ready routers is described in Section 3, for
the sake of clarifying the requirements. Then, outline
of the rule-based language for DiffServ is proposed in
Section 4. A MIB (management information base)
and/or PIB (policy information base) that simulates
the language is described in Section 5.

2. A Model of A DiffServ-ready Network
A DiffServ network domain can be modeled as in
Figure 1. The domain is a part of networks in which
the same set of PHBs (per-hop behaviors) [Bla 98] is
used. A DSCP (differentiated services code point)
[Nic 98] is assigned to each PHB in this domain. The
network consists of routers. Because of simplicity,
switches and hubs are ignored here. Computers are
connected to routers. Some computers work as IP
packet sources and others work as IP packet destina-
tions. They are connected to the routers.

DiffServ
Domain

Edge interfaces
(ingress interfaces)

Source

Source

Destination

Destination

Core interfaces Edge interface
(egress interface)

Figure 1. A network model

The (network) interfaces of the routers that are con-
nected to computers are called edge interfaces, and
the interfaces that are connected between routers are
called core interfaces. Edge interfaces that are con-
nected to packet sources are called ingress interfaces,
and those connected to packet destinations are called
egress interfaces. An interface may be used as both
an ingress and egress interfaces, and it may be used as
both edge and core interfaces. Routers that have edge
interfaces are called edge routers, and routers that
have only core interfaces are called core routers.

In this model, IP packets are classified at ingress
interfaces, and are marked in their DS field
(differentiated services field), which was formerly

called ToS (type of services) field. The value in the
DS field is called DSCP. The DSCP indicates the
service class that the packet belongs to. At core in-
terfaces, the QoS conditions of the packets are con-
trolled according to the DSCP. The DS field may be
cleared at egress interfaces.

IP packets are classified by using a classifier. A
classifier uses a set of matching conditions, and each
condition corresponds to a marking action, or a
DSCP. Each pair of condition and action can be re-
garded as an if-then rule:

if (condition) action;

This rule works for each packet. The behavior of an
interface can be specified using a set of if-then rules.

Classifiers used at ingress interfaces are called MF
classifiers (multi-field classifiers). An MF classifier
tests mainly the following five items: the source IP
address, the destination IP address, the IP protocol,
the source IP port, and the destination IP port.1 The
source and destination IP addresses may be a specific
address, a subnet address, or an address range. The
source and destination port may be a specific port
number or a range of port numbers. The action taken
as the result of MF classification is to assign a DSCP
to a packet. The action may also include assigning a
queue priority, packet discarding conditions, sched-
uling conditions, and so on, to the packet. An exam-
ple rule is:

if (Source IP == 192.168.0.1 && Source port == 80)
DSCP = 46;

Classifiers are also used at core and egress inter-
faces. They are called BA classifiers (basic aggregate
classifiers). A BA classifier tests the DSCP. The ac-
tion taken as the result of BA classification is to assign
a queue priority, and it may be to assign packet dis-
carding conditions, scheduling or shaping conditions,
and so on. An example rule is:

if (DSCP == 46) queue_priority = 6;

Rules with MF and BA classifiers are deployed by a
policy server (Figure 2). A policy server deploys
rules in accordance with network operator’s com-

1 If the IP protocol is not TCP nor UDP, the source and
destination ports are not supplied.
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Figure 2. Centralized control over a DiffServ domain
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mands or requests of application programs.

3. A Model of DiffServ-ready Routers
A conceptual model of DiffServ-ready routers
(Figure 3) [Kan 99] is explained here. The interface
language must support the functions of this model.
This model is similar to those described in the con-
ceptual router model draft [Ber 99b] or in the DiffServ
MIB draft [Bak 99], but there are some difference in
details.

In this router model, a router consists of a switch
fabric (and/or routing processor) and two or more
network interfaces. The interfaces are connected to
the switch fabric and one or more lines, and each in-
terface consists of an inbound and outbound units.

Each inbound/outbound unit has three subunits: a
control unit, a condition unit, and an action unit
(Figure 4). The control unit contains lists of if-then
rules (policy rules), which are programs to control the
condition and action units. The policy-rule storage
may be shared between inbound and outbound units,
or by all the interfaces. All the policy-rule storage
components in a router are assumed to have the same
set of rules and a control unit uses a subset of them.

The condition unit contains matchers and meters.
The classifier classifies packets into individual flows
according to the matching rules supplied by the con-
trol unit. The meters work on a classified flow. A
meter may count the number of packets or bytes in a
queue, tests conformity with a leaky/token bucket
condition, or tests other conditions on a stream. If the
condition supplied by the meter meets (or does not
meet), a linkage label that indicates the conformity (or
non-conformity) is assigned to the packet.

The action unit, which can also be
called the traffic-control block (TCB),
consists of markers, discarders, and a
scheduler that contains queues. A
marker rewrites the DS field according
to the condition outputted by the condi-
tion unit. A discarder discards packets
when a metering condition is not satis-
fied or when the scheduler decides to
discard packets. The scheduler buffers
packets, and outputs them to the line.
The scheduler discards a packet that
overflows from the queue, or that the
linkage label meets an early discard
condition. For example, if the assured-
forwarding per-hop behaviors (AF
PHBs) [Hei 99] of the DiffServ model
are implemented on the router, a queue
must support multiple discard condi-
tions. Early discard conditions enable
this. Both deterministic discard and
random early discard (RED) methods
[Bra 99] are supported by this MIB.

4. A Rule-based Language for
PS-to-Router Interface

An interface between a policy server and
DiffServ-ready routers is defined as a

rule-based language here. In this language, a policy
rule to be deployed is described using building block
rules and linkage labels that connects them.

4.1 Outline of the language
A policy rule may contain one or more meters, and
may contain multiple actions depending on the result
of metering. For example, the following rule contains
a meter (“Average_rate <= 1Mbps”) and two actions
(“DSCP = 46; …” and “discard_all”).

if (Source_ip == 192.168.1.*) {
if (Average_rate <= 1Mbps) {

DSCP = 46; // EF
queue_priority = 6;

} else {
discard_all;

};
};

The above rule is already too complicated to be ex-
pressed as an atomic rule in the interface language. A
more complicated rule may easily be constructed.
Such rules must be expressed using smaller atomic
units. If such rules were expressed using ready-made
language constructs, they would be vendor-specific
and non-interoperable.

There are two methods for expressing such a com-
plicated rule by simpler language elements.

• Recursion
If the action part of a rule may contain rules, com-
plicated conditions and actions can be expressed.
For example, in the above rule, both the outer and
inner if-constructs are rules. The action part of the
outer rule contains the inner rule.

• Rule decomposition

+-----------------------------------------------------------+
| Router |
| |
| Logical interface Switch fabric Logical interface |
| +-----------------+(Routing processor)+-----------------+ |
| | | +-------+ | | |
| | +-------------+ | |\ /| | +-------------+ | |

------>|Inbound unit |------>| \ / |<------|Inbound unit |<------
| | +-------------+ | | \ / | | +-------------+ | |
| | | | X | | | |
| | +-------------+ | | / \ | | +-------------+ | |

<------|Outbound unit|<------| / \ |------>|Outbound unit|------>
| | +-------------+ | |/ \| | +-------------+ | |
| | | +-------+ | | |
| +-----------------+ +-----------------+ |
| |
+-----------------------------------------------------------+

Figure 3. Conceptual model of a QoS-ready router

+-----------------------------------------------------------+
| Inbound/outbound unit |
| +---------------+ |
| +--------------------+ | Policy rule | |
| | Control unit |--| storage | |
| +--------------------+ |(if-then rules)| |
| | | +---------------+ |
| | v |
| | +---------------------------+ |
| v | Action unit | |
| +-------------------------+ | (Traffic control block) | |
| | Condition unit | | +--------+ | |
| | | | +-->|Droppers|<---+ | |
| | +-----------+ +------+ | | | +--------+ | | |

------>|Classifier |->|Meters|-----+ | | |
| | +-----------+ +------+ | | | +-------+ +---------+ | |
| | | | +->|Markers|->|Scheduler|------>
| +-------------------------+ | +-------+ +---------+ | |
| | (Queues) | |
| +---------------------------+ |
| |
+-----------------------------------------------------------+

Figure 4. The structure of an inbound/outbound unit of the router
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A complicated rule may be decomposed into mul-
tiple simple rules.

We believe the latter is better because of two reasons:

1) A recursive rule is often difficult to be understood
by operators (users).

2) A recursive structure may be more difficult to be
implemented.

In this method, the above rule can be decomposed into
the following rules. The structure of this rule set can
be illustrated as in Figure 5.

1) Matching rule
if (Source_ip == 192.168.1.*)

Label = source_net_1;

2) Policing rules (metering rules)
if (Label == source_net_1 &&

Average_rate <= 1Mbps) {
Label = source_net_1_conformant; };

if (Label == source_net_1 &&
Average_rate > 1Mbps) {
Label = source_net_1_non_conformant; };

3) Marking rule
if (Label == source_net_1_conformant) {

DSCP = 46; // EF
Label = source_net_1_EF; };

4) Discarding rule
if (Label == source_net_1_non_conformant)

discard_all;

5) Scheduling rule
if (Label == source_net_1_EF) {

queue_priority = 6; };

In this language, types of rules are the above five.
Matching, marking, and discarding rule sets are ap-
plied to a packet only once because repetitive appli-
cation of these rules is unnecessary. Policing and
scheduling rules are applied to a packet every time a
linkage label is assigned to the packet because repeti-
tive application of these rules is sometimes necessary.
See Figure 6.

Flows may be aggregated by specifying the same
linkage label value. For example, two flows are ag-
gregated and marked with the same DSCP, i.e., 46,
after matching in Figure 7.

4.2 Linkages between building blocks
A linkage label is similar to a DSCP. It is marked and
tested. However, the number of linkage labels can be
much larger than the number of DSCPs, i.e., 64. A
linkage label is not put on a packet, i.e., it is virtual,

and it is an internal state of a router.

4.3 Building block rules
The five types of building block rules are explained
below.

Matching rules represent an MF or BA classifier.
A matching rule tests IP packet header, i.e., one or all
of DSCP, source and destination IP addresses, IP
protocol, source and destination IP ports, and so on.
The action of a matching rule is to assign a new link-
age label to the packet.

Policing means packet discarding action that is
taken when the SLA (service-level agreement) is vio-
lated. The policing function can be implemented by
using a leaky bucket meter, a token bucket meter, a
time window meter, or other types of meters. How-
ever, for interoperability, a metering condition should
be generic and a specific type of meter should not be
specified. The form of conditions is one of:

• value <= constant

• value > constant

Marking means writing a DSCP. The only condi-
tion for a marking rule is label testing. The actions
are to put a DSCP and to put a new linkage label.

Discarding means packet discarding action that is
taken when too many packets are queued. Discarding
may occur before the queue is filled. The purpose of
early discard is latency or congestion control.

Scheduling rules are used for queuing and dequeu-
ing control. The queue priority, scheduling algorithm
and its parameters can be specified in a scheduling
rule. They can also be used for shaping control. The
minimum and/or maximum output rate can be speci-
fied. The only condition for a scheduling rule is label
testing. A hierarchical scheduling algorithm, such as
class-based queueing (CBQ) can be specified by
linking multiple scheduling rules.

5. A MIB/PIB for QoS Control
We designed the interface using a MIB/PIB and pro-
posed an Internet draft to IETF. It is called the QoS

PIF MIB (the Quality of Service
Programming Interface Management
Information Base) when it is used
with SNMP, and called the QoS PIF
PIB when used with COPS protocol.
The definition of the MIB is given in
the draft [Kan 99]. The interface
language is not implemented directly

+-----------+ or +-----------+ +-----------+ or
-->| Matcher |---------------------->| Marker |-->| Discarder |---------------------->

+-----------+ ^ | +-----------+ +-----------+ ^ |
| +-----------+ | | +-----------+ |
+--| Policer |--+ +--| Scheduler |--+

+-----------+ +-----------+

Figure 6. Connection between building block rules

+-----------+ Label=46 +-----------+
--+-->| Matcher |--+------>| Marker |-->

| +-----------+ | +-----------+
| |
| +-----------+ |
+-->| Matcher |--+

+-----------+

Figure 7. Example of flow aggregation

source_net_1 source_net_1_conformant source_net_1_EF
: : :

+-----------+ : +-----------+ : +-----------+ : +-----------+
-->| Matcher |--+-->| Policer |-->| Marker |-->| Scheduler |-->

+-----------+ |or +-----------+ +-----------+ +-----------+
| +-----------+ +-----------+
+-->| Policer |-->| Discarder |

+-----------+ : +-----------+
:

source_net_1_non_conformant

Figure 5. Connection between building block rules
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but is simulated by MIB or PIB.

5.1 Structure of the QoS PIF MIB
The QoS PIF MIB consists of four parts: the QoS-
capability part, the queue-setting part, the packet-
discarding-method part, and policy-rule part. The first
three are defined for whole router, and the last one is
defined for each logical interface. The policy-rule
part simulates the rule-based language.

1) QoS-capability part
This part specifies the QoS-related capability of
the router. It advertises possible queuing algo-
rithms, packet discarding algorithms, and so on to
the manager. A manager, such as a policy server,
may use the information from this part to deter-
mine the ability of the router. This part corre-
sponds to a policy-rule-class (PRC) support table
in the QoS PIB [Fin 99]. However, the description
level of this part is lower than the PRC table and
the descriptions are independent of specific policy
management systems.

2) Queue-setting part
This part specifies the QoS-related settings of the
scheduler and the scheduling queues in the logical
interfaces of the router. If an algorithm or value
that is not allowed in the QoS capability part is
specified, an error is returned.

3) Packet-discarding-method part
This part specifies methods of discarding packets
in the event of congestion. Deterministic or ran-
dom early discard, or no early discard, may be
specified. These methods are used in action rules
that are specified in the policy-rule part. This part
does not directly specify discarding actions. That
packet-discarding methods are specified separately
from both the rule actions and the queuing method
is a distinct feature of this MIB.

4) Policy-rule part
This part defines policy rules for each router in-
terface. Classifier, meter, and action rules are
separately specified. If a discarding method that is
not allowed in the packet-discarding-method part
is specified, an error is returned.

5.2 QoS Capability
Various routers have been developed by many ven-
dors. The capability related to QoS control also var-
ies. Thus, the manager of this MIB, or PIB that is
converted from of this MIB, i.e., a policy server or
PDP in COPS [Boy 99], must know the QoS-related
capability of the router. The QoS-capability part of
this MIB defines it. This part contains the set of
queuing methods and packet-discarding methods that
the router has. The available scheduling algorithms
are explained in Section 5.3, and the available dis-
carding methods are explained in Section 5.4.

5.3 Scheduling Methods
The scheduling-methods table consists of method
definitions for scheduling packets. A scheduling
method contains a scheduling algorithm, selected from
the algorithms defined in the QoS-capability part of

this MIB, and parameters for the algorithm. This ta-
ble makes it unnecessary to specify identical schedul-
ing methods more than once in the policy-rule part.

The available scheduling algorithms are as follows.

1) First-in first-out (FIFO) scheduling
All packets are enqueued into a single queue in
this algorithm. The order of dequeuing packets is
exactly the same as the order of enqueuing them.

2) Priority scheduling
Packets are enqueued into two or more queues
according to their priority classes represented by
the linkage label. Higher priority packets are al-
ways dequeued earlier.

3) Packet-fair scheduling
Packets are enqueued into two or more queues
according to their linkage labels. This scheduling
algorithm is fair for each queue in terms of pack-
ets. Weights can be defined for each queue, if the
weighted packet-fair scheduling flag is turned on
in the QoS-capability part. For example, packets
may be dequeued according to a (weighted)
packet-by-packet round-robin algorithm when this
algorithm is used.

4) Byte-fair scheduling
Packets are enqueued into two or more queues
according to their linkage labels. The scheduling
algorithm is fair for each queue in terms of packet
lengths. Weights can be defined for each queue, if
the weighted byte-fair scheduling flag is turned on
in the QoS capability part. For example, packet-
fair scheduling is used in the fair-queuing or
weighted-fair-queuing (WFQ) algorithm.

5) Bounded byte-fair scheduling
Packets are enqueued into two or more queues
according to their linkage labels. The scheduling
algorithm is fair for each queue in terms of packet
lengths. However, the bandwidth is limited for
each queue. The sum of the specified bandwidths
must be equal to or smaller than the bandwidth of
the line. If the sum is less than the bandwidth of
the line, or one or more queues do not fully use
their specified bandwidth, the rest of the band-
width may be again shared among the queues, or
may be occupied by the highest-priority queue.
The algorithm for using the remaining bandwidth
is implementation-dependent. (The detailed algo-
rithm may be specified in a vendor-specific MIB.)
For example, bounded byte-fair scheduling will be
used for implementing or simulating the class-
based queuing (CBQ) [Flo 95].

If the router has two or more scheduling methods that
belong to the same category above, they can be dis-
tinguished by using an additional parameter.

Queuing methods, such as WFQ or CBQ, cannot be
directly specified in the scheduling-method part of the
MIB, because such methods are regarded as a combi-
nation of a scheduling algorithm and higher-level
control that will be implemented using other functions
defined in this MIB. It is inadequate to specify a spe-
cific high-level queuing algorithm in a standardized
MIB, because a very wide variety of queuing algo-
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rithms have been, and will probably continue to be,
implemented in routers. The MIB should be generic.

5.4 Packet-discarding methods
The discarding-method table consists of method defi-
nitions for discarding packets. A discarding method
contains a discarding algorithm, which is selected
from the algorithms defined in the QoS-capability part
of this MIB, and parameters for the algorithm. This
table makes it unnecessary to specify the identical
discarding methods more than once. Available dis-
carding algorithms are as follows.

1) Discarding all
All the packets in the virtual flow are discarded.
For example, this algorithm is used when the flow
is without service-level agreements (SLA) or vio-
lates an SLA. This algorithm is a special case for
the deterministic early discarding (4).

2) Tail discarding (non-early discarding)
Packets are discarded only when the queue is
filled. This is the default algorithm and all routers
must support this. Thus, no capability flag exists
for this algorithm in the QoS-capability part. This
algorithm is also a special case for the determinis-
tic early discarding (4).

3) Random early discarding (RED/WRED)
Packets are discarded when a specified proportion
of the queue is filled. The packets to be discarded
are selected at random. The proportion at which
some packets start to be discarded, and the mini-
mum proportion above which all incoming packets
are discarded are specified as parameters.

4) Deterministic early discarding (DED/WDED)
Packets are discarded when a specified proportion
of the queue is filled. All the packets are dis-
carded in this case, or the packets to be discarded
are selected by a deterministic method. The same
parameters as for RED are used in this method.

The parameters for RED and DED are defined as a
value between 0 and 1000 per mil. If a
parameter is not specified, its value is
1000. The discarding-method table
contains a list of discarding methods
available from the policy rules. Each
policy rule may specify a discarding
method as an action. AF PHBs can be
implemented using weighted DED or
RED.

5.5 Policy Rules
Policy rules here implement the building
block rules defined in Section 4. Policy
rules are defined using three conceptual
tables: the classifier table, the metering-
rule table, and the action table. The
action rules defined in the action table
are a combination of marking, discard-
ing, and scheduling rules defined in
Section 4.

The policy rule architecture is shown
in Figure 8. A classifier defined in the
classifier table assigns a linkage label to

a packet flow. Meters defined in the metering-rule
table and actions defined in the action table work only
on a flow specified by the linkage label in the rules. A
meter replaces the linkage label when the metering
rule condition holds. If no meter is needed, the output
of a classifier can be input to an action, and if more
than one meters are needed, an output from a meter
can be input to another meter. (The box “others” in
Figure 6 actually does nothing.)

Another example, using two-stage meters is shown
in Figure 9. The flow is classified to L1 by Classifier
1. If no metering condition is met in the first stage, L1
is not changed by “others”, and Action 1 is applied. If
a metering condition is met, the flows are marked by
labels L11 to L1N, and all the flows are again tested
by the metering conditions. The same set of meters is
applied. If no more metering conditions are met in
this second stage, the linkage label is not changed by
“others”, and an action from Action 11 to Action 1N
is applied to each flow. If a metering condition meets,
the flow is marked by one of labels L21 to L2M, and
an action from Action 21 to Action 2M is applied.

A policy, i.e., a list of policy rules, is assgined to
each role-combination, instead of to each logical in-
terface, in the policy framework [Ste 99]. A role-
combination can be represented by a policy table in
this MIB. When a packet arrives at a logical inter-
face, only the conditions in the classifiers linked from
the rule-list table of the interface are tested.

5.5.1 Classifier table
The classifier table consists of MF and BA classifiers.
If the test condition is for the protocol, the source IP
address and/or port, or the destination IP address
and/or port. An MF classifier can test the DS field.

MF and BA classifiers are put in the same table,
unlike with the DiffServ MIB, because the order of
the classifiers is sometimes significant, and because
the simplest way to express the classifier order is by
the order in the table. When a flow can be matched to
both an MF and a BA classifiers, the flow is matched

+-----------------------------------------------------------+
| Policy rule 1 |
| + - - - - - - - - - - - - - - - - - - - - - - - - - -+ |
| : +-----------+ L1 +---------+ L11 +----------+ : |
| +-->|Classifier1|--+-->| Meter11 |---->| Action11 |--+ : |
| | : +-----------+ | +---------+ +----------+ | : |
| | : | +---------+ L12 +----------+ | : |
| | : +-->| Meter12 |---->| Action12 |--+ : |
| | : | +---------+ +----------+ | : |
| | : | ... ... | : |
| | : | +---------+ L1 +----------+ | : |
| | : +-->| others |---->| Action1 |--+ : |
| | : +---------+ +----------+ | : |
| | + - - - - - - - - - - - - - - - - - - - - - - - - -|-+ |
| | | |

----->| ... ... ... +------>
| | | |
| | Policy rule N | |
| | + - - - - - - - - - - - - - - - - - - - - - - - - -|-+ |
| | : +-----------+ LN +---------+ LN1 +----------+ | : |
| +-->|ClassifierN|--+-->| MeterN1 |---->| ActionN1 |--+ : |
| : +-----------+ | +---------+ +----------+ | : |
| : | +---------+ LN2 +----------+ | : |
| : +-->| MeterN2 |---->| ActionN2 |--+ : |
| : | +---------+ +----------+ | : |
| : | ... ... | : |
| : | +---------+ LN +----------+ | : |
| : +-->| others |---->| ActionN |--+ : |
| : +---------+ +----------+ : |
| + - - - - - - - - - - - - - - - - - - - - - - - - - -+ |
| |
+-----------------------------------------------------------+

Figure 8. Policy-rule architecture
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to whichever classifier is first in the table. Classifier
examples are shown:

C1: if (source_ip == 192.168.1.*) label = 1000;
C2: if (DSCP == 64) label = 64;

A classifier assigns a linkage label to a microflow
or an aggregated flow. Two or more classifiers may
assign the same linkage label. Then, the conditions
represented by these classifiers are “or”ed. For exam-
ple, classifier C3, which cannot be expressed directly
in this MIB, can be expressed by classifiers C31 and
C32:

C3: if (source_ip == 192.168.1.* ||
source_ip == 192.168.3.*)
label = 1000; // Caonnot be expressed.

C31:if (source_ip == 192.168.1.*) label = 1000;
C32:if (source_ip == 192.168.3.*) label = 1000;

This notation simplifies the representation of disjunc-
tive conditions expressed by the SMI.

There is only one classifier table in a router. The
classifiers are selected and ordered for each logical
interface by the policy table.

5.5.2 Metering-rule table
The metering rule-table consists of metering rules that
apply to a virtual flow defined by a classifier or an-
other metering rule, and assigns a new linkage label to
a virtual flow that consists of packets matching the
metering condition. The linkage label of packets that
do not match the metering condition is not changed.
All the entries of the metering- rule table in which the
same linkage label is specified are applied sequen-
tially (in logic) to the flow that has the linkage label.

For example, the following classifier and metering
rules are given.

C1: if (source_ip = 192.168.1.*) label = 1000;
M1: if (label == 1000 && 2 Mbps < committed_rate)

label = 1500;
M2: if (label == 1000 && 1 Mbps < committed_rate &&

committed_rate <= 2 Mbp)
label = 1501;

The meaning of the above set of rules is equivalent
to the following program.

if (source_ip = 192.168.1.*) {
label = 1000;
if (label == 1000 && bandwidth > 2 Mbps) {

label = 1500; … (1)
};
if (label == 1000 &&

1 Mbps < committed_rate &&
committed_rate <= 2 Mbps) {
label = 1501; … (2)

};
… (3)
};

However, the order of rules M1 and M2 is not sig-
nificant, and the conditions of the meters on the same
linkage label must be disjoint. The conditions of the
metering rules are conjunctive. If the linkage label is
not rewritten, all the metering rules for the same
linkage label are tested sequentially or in parallel.

If the linkage label is updated by a metering rule,
the metering rules for the updated linkage label are
applied. Thus, if there are metering rules for label =
1500, they are tested at (1) in the above program.

5.5.3 Action table
The action table consists of actions that are applied to
packets that have a specified linkage label. An action
can be one of the following actions or a combination
of them.

1) Set a DSCP.
The DSCP value that is to be set to the packet is
specified.

2) Set a scheduling method and a queue number.
The precedence of the queue (or the queue num-
ber) in which the packet is to be put is specified.

3) Set a discarding method.
The discarding method to be used
for the packet is specified.

If no action is specified for a linkage
label, no action is taken for a flow la-
beled by the linkage label.

Because the queue number and the
discarding method in an action can be
defined separately, different discarding
methods may be specified for the same
queue. If it is not possible to implement
this, the SNMP agent must return an
error (and may raise a trap).

Examples of actions are given.

A1: if (label == 64) DSCP = 64;
A2: if (label == 1000) {

queuing_method = 3;
// an index into the queuing

method table.
queue_number = 1;
discarding_method = 2;

// an index into the discarding
method table.

};

+-----------------------------------------------------------+
| +-----------+ |

----->|Classifier1| |
| +-----------+ |
| |L1 |
| | |
| | +--------+ L11 +--------+ L111 +---------+ |
| +-->|Meter11 |---+-->|Meter111|----->|Action111|--+ |
| | +--------+ | +--------+ +---------+ | |
| | | ... ... | |
| | | +--------+ L11M +---------+ | |
| | +-->|Meter11M|----->|Action11M|--+ |
| | | +--------+ +---------+ | |
| | | +--------+ L11 +---------+ | |
| | +-->| Others |----->|Action11 |--+ |
| | +--------+ +---------+ | |
| | ... | |
| | | |
| | +--------+ L1N +--------+ L1N1 +---------+ | |
| +-->|Meter1N |---+-->|Meter1N1|----->|Action1N1|--+ |
| | +--------+ | +--------+ +---------+ | |
| | | ... ... | |
| | | +--------+ L1NL +---------+ | |
| | +-->|Meter1NL|----->|Action1NL|--+ |
| | | +--------+ +---------+ | |
| | | +--------+ L1N +---------+ | |
| | +-->| Others |----->|Action1N |--+ |
| | +--------+ +---------+ | |
| | | |
| | +--------+ L1 L1 +---------+ | |
| +-->| Others |---------------------->|Action1 |--+----->
| +--------+ +---------+ |
| |
| ... |
| |
+-----------------------------------------------------------+

Figure 9. Example of an architecture with two-stage meters
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6. Concluding Remarks
A method of expressing a policy rule by a rule-based
language using building block rules and linkage labels
was proposed in this paper. The outline of the lan-
guage was described, and a MIB/PIB that simulates
the language was described too. The two design goals
of the language were interoperability and syntagmatic
modularity. The latter has been mostly achieved by
free combination of building block rules. However,
the former depends on the detail of the language de-
sign, and both the language nor the QoS PIF MIB/PIB
have not yet been implemented. Only the preliminary
version of QoS PIF PIB was implemented.

Future work include detailed specification of the
rule-based language and implementation of the lan-
guage on routers of several vendors, including Hi-
tachi’s giga-bit router GR2000.
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