
�

Rule-based Modular Representation
of QoS Policies

Yasusi Kanada
Hitachi Ltd., Central Reserach Laboratory

�Networking Architecture Workshop 2000-2-3

Internet QoS Guarantee and Its Approaches

�Needs of QoS guarantee in the Internet
• Mission-critical communications are increasing.

• Multi-media traffics are increasing.

� IntServ and DiffServ from IETF
• Integrated services (IntServ)

• Flow-based QoS control architecture

• High overhead and not scalable

• Differentiated services (DiffServ)
• Class-based QoS control architecture

• Low overhead and scalable — practical in large-scale networks



�

�Networking Architecture Workshop 2000-2-3

A Model of A DiffServ-ready Network

�A QoS policy server
• Required for controling QoS conditions or routers.

�QoS-ready routers (and QoS-ready switches)

� Interface between a policy server and network nodes
• SNMP

• COPS

• API
(CORBA IIOP)

• CLI
(command language)

DiffServ
Domain

Deploying rules
with MF

classifiers

Deploying rules
with BA

classifiers

Policy Server

Application
request

Operator
command

�Networking Architecture Workshop 2000-2-3

Problems of conventional PS-Router Interfaces

�Poor syntax
• SNMP:

get/set a single value.

• API: function calls only.

• No structuring methods
(control structures).

�Poor semantics
• No relation nor constraints

can be described.

• Protocols specify only very
limited part of the semantics.

• Semantics must be specified
formaly for interoperability.

• Standard protocols do not guarantee interoperability any longer.

Syntactic and semantic gap

SNMP & MIB
COPS
& PIB

API
(IIOP)

Policy rules

Network nodes (routers, switches, …)

Policy server



�

�Networking Architecture Workshop 2000-2-3

An Alternative Interface:
A Rule-based Programming Language

�Why a language?
• Because a language is a combination of syntax and semantics.

�Why programming?
• Policy-based control is programming.

• Network nodes have been configured only using parameters (data).

• We need programs for configuration, because the function to be
configured is so complex.

�Why rule-based?
• Because a policy is a rule-based program.

• This language may be similar to languages for expert systems,
such as OPS5 or Nexpert Object.

�Networking Architecture Workshop 2000-2-3

Elements of the Rule-based Language

�The language consists of
• Building block rules

• Primitive rules to construct policy rules.

• Linking labels
• Connections between building blocks.

�What is linking labels?
• A linking label is something like a DSCP.

• The number of linking labels is almost not limited.

• The number of DSCPs is only 64 — not sufficient!

• The linking label is not put on a packet.
• The linking label never goes out from a router — it is internal to the

router.

• The linking label may exist out of a packet, or it may be virtual.

Building block
rule

Building block
rule

Linking
labelBuilding block

rule



�

�Networking Architecture Workshop 2000-2-3

A Model of DiffServ-ready Routers

Router

Network interface

Inbound unit

Outbound unit

Network interface

Inbound unit

Outbound unit

Line Line

Inbound/outbound unit

Building blocks

Switch fabric /
Routing processor

�Networking Architecture Workshop 2000-2-3

Required Primitives: Building Block Rule Types

�Matching rules
• Rules for flow classification.
• Example: if (Source_ip == 192.168.1.*) …;

�Policing rules (Metering rules)
• Rules for policing (bandwidth control, etc.).
• Example: if (Average_rate <= 1Mbps) …;

�Marking rules
• Rules for writing a DSCP.
• Example: if (…) DSCP = 46;

�Discarding rules
• Rules for discarding packets.
• Example: if (…) discard_all;

�Scheduling rules
• Rules for shaping and/or scheduling packets.
• Example: if (…) queue_priority = 6;



�

�Networking Architecture Workshop 2000-2-3

Outline of the Rule-based Language

�A policy rule example — a procedural description
• if (Source_ip == 192.168.1.*) {

if (Average_rate <= 1Mbps) {
DSCP = 46; // EF
queue_priority = 6;

} else {
discard_all;

};
};

	
Networking Architecture Workshop 2000-2-3

Outline of the Rule-based Language (cont’d)

�Representation of the policy in the language
• Matching rule

• if (Source_ip == 192.168.1.*) Label = s1;

• Policing rules
• if (Label == s1 && Average_rate <= 1Mbps)

Label = s1_conformant;
if (Label == s1 && Average_rate > 1Mbps)

Label = s1_non_conformant;

• Marking rule

• if (Label == s1_conformant) {
DSCP = 46; Label = s1_EF; };

• Discarding rule
• if (Label == s1_non_conformant) discard_all;

• Scheduling rule

• if (Label == s1_EF) queue_priority = 6;



�

		Networking Architecture Workshop 2000-2-3

Outline of the Rule-based Language (cont’d)

�Are decomposed rules too complicated?
• The program not much complicated.

Policing:Classification:

else ?

source_net_1 source_net_1_conformant

source_net_1_nonconformant

Discarding:
drop_all_packets

Scheduling:
queue_priority = 6;

or

Source_IP ==
192.168.0.1 ?

Information_rate
<= 2Mbps ?

Marking:
DSCP = 46

source_net_1_EF

	�Networking Architecture Workshop 2000-2-3

Building Blocks on Top of Conventional
Protocols and/or APIs

�The language can be implemented on top of
• SNMP (using a MIB)

• PIB (using a PIB)

• API (using function calls)

�A MIB/PIB for the building block approach
• A preliminary version was proposed to 46th IETF (November 1999)

• Draft name: draft-kanada-diffserv-qospifmib-00.txt

• Presented at:

– RAP WG (Resource Allocation Protocol WG)

– CFGMGMT BOF (Configuration Management BOF)

– Diffserv WG — Q&A only



�

	�Networking Architecture Workshop 2000-2-3

Concluding Remarks

�Most policy rules for DiffServ can be described using
• Five types of building block rules: matching, policing, marking,

discarding, and scheduling.

• Linking labels.

�Building block rule architecture is not restricted to
DiffServ.
• Applicable to other QoS services.

• Applicable to Active Networks (programming networks).

�Future work
• Definition and implementation of the rule-based language

• Including an implementation for Hitachi GR2000.


