Rule-based Modular Representation of QoS Policies

Yasusi Kanada Hitachi Ltd., Central Reserach Laboratory

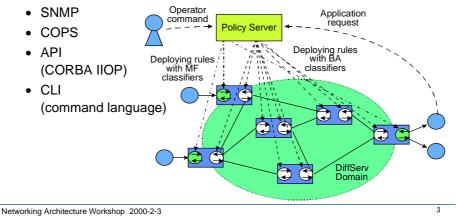
Internet QoS Guarantee and Its Approaches

Needs of QoS guarantee in the Internet

- Mission-critical communications are increasing.
- Multi-media traffics are increasing.

■ IntServ and DiffServ from IETF

- Integrated services (IntServ)
 - Flow-based QoS control architecture
 - High overhead and not scalable
- Differentiated services (DiffServ)
 - Class-based QoS control architecture
 - Low overhead and scalable practical in large-scale networks

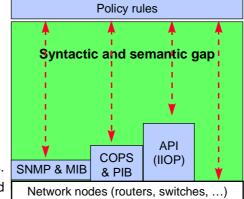

Networking Architecture Workshop 2000-2-3

A Model of A DiffServ-ready Network

■ A QoS policy server

- Required for controling QoS conditions or routers.
- QoS-ready routers (and QoS-ready switches)

■ Interface between a policy server and network nodes


Problems of conventional PS-Router Interfaces

Poor syntax

- SNMP: get/set a single value.
- API: function calls only. No structuring methods
- No structuring methods (control structures).

Poor semantics

- No relation nor constraints can be described.
- Protocols specify only very limited part of the semantics.

Policy server

- Semantics must be specified formaly for interoperability.
 - Standard protocols do not guarantee interoperability any longer.

Networking Architecture Workshop 2000-2-3

An Alternative Interface: A Rule-based Programming Language

■ Why a language?

• Because a language is a combination of syntax and semantics.

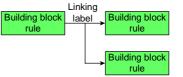
■ Why programming?

- Policy-based control is programming.
 - Network nodes have been configured only using parameters (data).
 - We need programs for configuration, because the function to be configured is so complex.

■ Why rule-based?

- Because a policy is a rule-based program.
- This language may be similar to languages for expert systems, such as OPS5 or Nexpert Object.

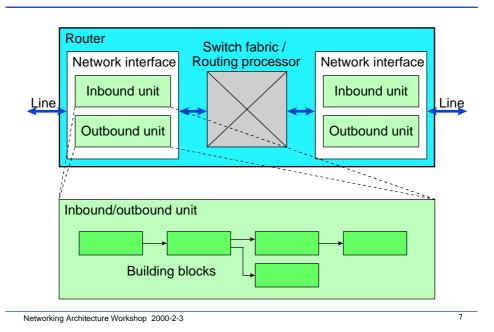
Networking Architecture Workshop 2000-2-3


Elements of the Rule-based Language

The language consists of

- Building block rules
 - Primitive rules to construct policy rules.
- Linking labels
 - Connections between building blocks.

■ What is linking labels?


- A linking label is something like a DSCP.
- The number of linking labels is almost not limited.
 - The number of DSCPs is only 64 not sufficient!
- The linking label is not put on a packet.
 - The linking label never goes out from a router it is internal to the router.
 - The linking label may exist out of a packet, or it may be virtual.

5

Networking Architecture Workshop 2000-2-3

A Model of DiffServ-ready Routers

Required Primitives: Building Block Rule Types

■ Matching rules

- Rules for flow classification.
- Example: if (Source_ip == 192.168.1.*) ...;

Policing rules (Metering rules)

- Rules for policing (bandwidth control, etc.).
- Example: if (Average_rate <= 1Mbps) ...;

■ Marking rules

- Rules for writing a DSCP.
- Example: if (...) DSCP = 46;

■ Discarding rules

- Rules for discarding packets.
- Example: if (...) discard_all;

Scheduling rules

- Rules for shaping and/or scheduling packets.
- Example: if (...) queue_priority = 6;

Networking Architecture Workshop 2000-2-3

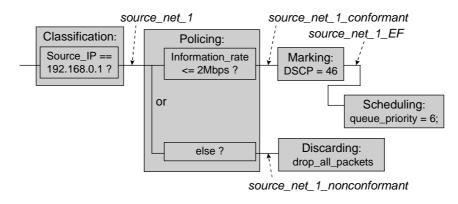
Outline of the Rule-based Language A policy rule example — a procedural description if (Source_ip == 192.168.1.*) { if (Average_rate <= 1Mbps) { DSCP = 46; // EF queue_priority = 6; } else { discard_all; }; };</pre>

Networking Architecture Workshop 2000-2-3

Outline of the Rule-based Language (cont'd)

Representation of the policy in the language

- Matching rule
 - if (Source_ip == 192.168.1.*) Label = s1;
- Policing rules
 - if (Label == s1 && Average_rate <= 1Mbps)
 - Label = s1_conformant;
 - if (Label == s1 && Average_rate > 1Mbps) Label = s1_non_conformant;
- Marking rule
 - if (Label == s1_conformant) {
 - DSCP = 46; Label = s1_EF; };
- Discarding rule
 - if (Label == s1_non_conformant) discard_all;
- Scheduling rule
 - if (Label == s1_EF) queue_priority = 6;


10

Networking Architecture Workshop 2000-2-3

Outline of the Rule-based Language (cont'd)

Are decomposed rules too complicated?

• The program not much complicated.

Networking Architecture Workshop 2000-2-3

Building Blocks on Top of Conventional Protocols and/or APIs

The language can be implemented on top of

- SNMP (using a MIB)
- PIB (using a PIB)
- API (using function calls)

■ A MIB/PIB for the building block approach

- A preliminary version was proposed to 46th IETF (November 1999)
 - Draft name: draft-kanada-diffserv-qospifmib-00.txt
 - Presented at:
 - RAP WG (Resource Allocation Protocol WG)
 - CFGMGMT BOF (Configuration Management BOF)
 - Diffserv WG Q&A only

12

Networking Architecture Workshop 2000-2-3

Concluding Remarks

■ Most policy rules for DiffServ can be described using

- Five types of building block rules: matching, policing, marking, discarding, and scheduling.
- Linking labels.

Building block rule architecture is not restricted to DiffServ.

- Applicable to other QoS services.
- Applicable to Active Networks (programming networks).

Future work

- Definition and implementation of the rule-based language
 - Including an implementation for Hitachi GR2000.

Networking Architecture Workshop 2000-2-3