« 1995-11 | メイン | 1996-02 »

1996-01 アーカイブ

1996-01-01

Kanada, Y., 未出版, 1996.

[ English page ]
[ 論文 PDF ファイル ] [ 論文 ポストスクリプト ファイル ]

[ Java による各種の制約充足問題のデモ (それぞれ触媒,規則,フラストレーションをかえてためせます) ]

要旨 (英語のみ): A method for solving large-scale constraint satisfaction problems is proposed in the present paper. This method is stochastic (or randomized) and uses local information only, i.e., no global plan is expressed in the program and the computation refer to no global information. This method uses CCM (Chemical Casting Model) as a basis, which is a model for emergent computation proposed by the author. The original CCM-based method minimizes the number of constraint violations not directly but throught optimization of local functions, which are called LODs (local order degrees). This method sometimes falls into a "local maximum." This difficulty is solved by a type of annealing, which we call the frustration accumulation method (FAM). FAM also works only with local information. No global functions is used in FAM, No global parameters such as temperature are used, and global control is thus unnecessary. Experiments show that the performance of this method is not very sensitive to parameter values. This means that parameter tuning is easy. In several problems, the performance is comparable to conventional simulated annealing or GSAT, which are based on global evaluation functions. Because of the nonexistence of global information reference, CCM with FAM can be parallelized very easily. Thus, the performance is improved and is almost linear in certain cases.

研究テーマ紹介: CCM: 化学的計算のモデル

Kanada, Y., 未出版, 1996.

[ English page ]
[ 論文 PDF ファイル ] [ 論文 ポストスクリプト ファイル ]

要旨 (英語のみ): A method for solving large-scale constraint satisfaction problems using an annealed symmetrically-connected neural network, which is called DSN-FAM, is proposed in the present paper. Some conventional methods, such as Hopfield networks, often fail to find a solution. Some others, such as Boltzmann Machines, take too much time. These difficulties are solved by a type of annealing technique, which we call the frustration accumulation method (FAM). DSN-FAM works only with local information, and no global functions or global parameters such as a temperature are used. DSN-FAM thus works autonomously. That is, no external control is necessary while operating. Experiments show that this method does not fail to find a solution and the execution time is less than one tenth of Boltzmann Machines. The performance can be easily and almost linearly improved by parallel processing using tens of processors.

研究テーマ紹介: CCM: 化学的計算のモデル

1995-11

1996-02

(C) 2007 by Yasusi Kanada
Powered by Movable Type